Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin Butz is active.

Publication


Featured researches published by Benjamin Butz.


Journal of the American Chemical Society | 2014

Carbon nanodots: toward a comprehensive understanding of their photoluminescence.

Volker Strauss; Johannes T. Margraf; Christian Dolle; Benjamin Butz; Thomas J. Nacken; Johannes Walter; Walter Bauer; Wolfgang Peukert; Erdmann Spiecker; Timothy Clark; Dirk M. Guldi

We report the characterization of carbon nanodots (CNDs) synthesized under mild and controlled conditions, that is, in a microwave reactor. The CNDs thus synthesized exhibit homogeneous and narrowly dispersed optical properties. They are thus well suited as a testbed for studies of the photophysics of carbon-based nanoscopic emitters. In addition to steady-state investigations, time-correlated single-photon counting, fluorescence up-conversion, and transient pump probe absorption spectroscopy were used to elucidate the excited-state dynamics. Moreover, quenching the CND-based emission with electron donors or acceptors helped shed light on the nature of individual states. Density functional theory and semiempirical configuration-interaction calculations on model systems helped understand the fundamental structure-property relationships for this novel type of material.


Nature | 2014

Dislocations in bilayer graphene

Benjamin Butz; Christian Dolle; Florian Niekiel; Konstantin Weber; Daniel Waldmann; Heiko B. Weber; Bernd Meyer; Erdmann Spiecker

Dislocations represent one of the most fascinating and fundamental concepts in materials science. Most importantly, dislocations are the main carriers of plastic deformation in crystalline materials. Furthermore, they can strongly affect the local electronic and optical properties of semiconductors and ionic crystals. In materials with small dimensions, they experience extensive image forces, which attract them to the surface to release strain energy. However, in layered crystals such as graphite, dislocation movement is mainly restricted to the basal plane. Thus, the dislocations cannot escape, enabling their confinement in crystals as thin as only two monolayers. To explore the nature of dislocations under such extreme boundary conditions, the material of choice is bilayer graphene, the thinnest possible quasi-two-dimensional crystal in which such linear defects can be confined. Homogeneous and robust graphene membranes derived from high-quality epitaxial graphene on silicon carbide provide an ideal platform for their investigation. Here we report the direct observation of basal-plane dislocations in freestanding bilayer graphene using transmission electron microscopy and their detailed investigation by diffraction contrast analysis and atomistic simulations. Our investigation reveals two striking size effects. First, the absence of stacking-fault energy, a unique property of bilayer graphene, leads to a characteristic dislocation pattern that corresponds to an alternating AB  AC change of the stacking order. Second, our experiments in combination with atomistic simulations reveal a pronounced buckling of the bilayer graphene membrane that results directly from accommodation of strain. In fact, the buckling changes the strain state of the bilayer graphene and is of key importance for its electronic properties. Our findings will contribute to the understanding of dislocations and of their role in the structural, mechanical and electronic properties of bilayer and few-layer graphene.


Chemical Communications | 2012

Functionalization of graphene by electrophilic alkylation of reduced graphite

Jan M. Englert; Kathrin C. Knirsch; Christoph Dotzer; Benjamin Butz; Frank Hauke; Erdmann Spiecker; Andreas Hirsch

The reaction of Na/K-reduced graphite with hexyliodide represents a new, versatile and mild approach to synthesize alkylated graphene derivatives, which were characterized by a combination of Raman spectroscopy, TEM and TGA/MS analysis.


Ultramicroscopy | 2011

Optimized Ar(+)-ion milling procedure for TEM cross-section sample preparation.

Levin Dieterle; Benjamin Butz; Erich Müller

High-quality samples are indispensable for every reliable transmission electron microscopy (TEM) investigation. In order to predict optimized parameters for the final Ar(+)-ion milling preparation step, topographical changes of symmetrical cross-section samples by the sputtering process were modeled by two-dimensional Monte-Carlo simulations. Due to its well-known sputtering yield of Ar(+)-ions and its easiness in mechanical preparation Si was used as model system. The simulations are based on a modified parameterized description of the sputtering yield of Ar(+)-ions on Si summarized from literature. The formation of a wedge-shaped profile, as commonly observed during double-sector ion milling of cross-section samples, was reproduced by the simulations, independent of the sputtering angle. Moreover, the preparation of wide, plane parallel sample areas by alternating single-sector ion milling is predicted by the simulations. These findings were validated by a systematic ion-milling study (single-sector vs. double-sector milling at various sputtering angles) using Si cross-section samples as well as two other material-science examples. The presented systematic single-sector ion-milling procedure is applicable for most Ar(+)-ion mills, which allow simultaneous milling from both sides of a TEM sample (top and bottom) in an azimuthally restricted sector perpendicular to the central epoxy line of that cross-sectional TEM sample. The procedure is based on the alternating milling of the two halves of the TEM sample instead of double-sector milling of the whole sample. Furthermore, various other practical aspects are issued like the dependency of the topographical quality of the final sample on parameters like epoxy thickness and incident angle.


Science Advances | 2017

Butterfly gyroid nanostructures as a time-frozen glimpse of intracellular membrane development

Bodo D. Wilts; Benjamin Apeleo Zubiri; Michael A. Klatt; Benjamin Butz; Michael G. Fischer; Stephen T. Kelly; Erdmann Spiecker; Ullrich Steiner; Gerd E. Schröder-Turk

High-resolution microscopy of hierarchically organized solid gyroid nanostructures sheds light on the underlying dynamic formation process. The formation of the biophotonic gyroid material in butterfly wing scales is an exceptional feat of evolutionary engineering of functional nanostructures. It is hypothesized that this nanostructure forms by chitin polymerization inside a convoluted membrane of corresponding shape in the endoplasmic reticulum. However, this dynamic formation process, including whether membrane folding and chitin expression are simultaneous or sequential processes, cannot yet be elucidated by in vivo imaging. We report an unusual hierarchical ultrastructure in the butterfly Thecla opisena that, as a solid material, allows high-resolution three-dimensional microscopy. Rather than the conventional polycrystalline space-filling arrangement, a gyroid occurs in isolated facetted crystallites with a pronounced size gradient. When interpreted as a sequence of time-frozen snapshots of the morphogenesis, this arrangement provides insight into the formation mechanisms of the nanoporous gyroid material as well as of the intracellular organelle membrane that acts as the template.


ACS Nano | 2014

Solution-processed parallel tandem polymer solar cells using silver nanowires as intermediate electrode.

Fei Guo; Peter Kubis; Ning Li; Thomas Przybilla; Gebhard J. Matt; Tobias Stubhan; Tayebeh Ameri; Benjamin Butz; Erdmann Spiecker; Karen Forberich; Christoph J. Brabec

Tandem architecture is the most relevant concept to overcome the efficiency limit of single-junction photovoltaic solar cells. Series-connected tandem polymer solar cells (PSCs) have advanced rapidly during the past decade. In contrast, the development of parallel-connected tandem cells is lagging far behind due to the big challenge in establishing an efficient interlayer with high transparency and high in-plane conductivity. Here, we report all-solution fabrication of parallel tandem PSCs using silver nanowires as intermediate charge collecting electrode. Through a rational interface design, a robust interlayer is established, enabling the efficient extraction and transport of electrons from subcells. The resulting parallel tandem cells exhibit high fill factors of ∼60% and enhanced current densities which are identical to the sum of the current densities of the subcells. These results suggest that solution-processed parallel tandem configuration provides an alternative avenue toward high performance photovoltaic devices.


Dental Materials | 2013

Microstructure of veneered zirconia after surface treatments: A TEM study

Alexandra Grigore; Stefanie Spallek; Anselm Petschelt; Benjamin Butz; Erdmann Spiecker; Ulrich Lohbauer

OBJECTIVE Clinical studies reveal that veneer chipping is one major problem associated with zirconia based dental restorations, the underlying mechanisms being still investigated. We semi-quantitatively analyzed the effects of different surface treatments (thermal etching, 35/105 μm sandblasting and coarse bur drilling (150 μm)) on the microstructure of a zirconia veneered dental ceramic. METHODS The relative monoclinic content on zirconia surfaces was determined using X-ray diffraction (XRD). The microstructure at the zirconia-veneer interface has thereafter been investigated using transmission electron microscopy (TEM). Selected area electron diffraction (SAED) was used to qualitatively assess the depth of the stress-induced phase transformation. RESULTS Sandblasting or bur drilling significantly roughened the zirconia surface. A reverse transformation of already transformed monoclinic zirconia grains back into the tetragonal polymorph has been observed after thermal veneering treatment. In TEM, the mechanically treated samples revealed a highly damaged area of 1-3 μm from the interface. The presence of monoclinic phase in veneered zirconia samples has been observed in SAED up to depths of 4 μm (35 μm sandblasted), 11 μm (105 μm sandblasted) and 9 μm (150 μm diamond drilled) below the interface. SIGNIFICANCE Regardless of the treatment protocol and produced roughness, the veneering ceramic perfectly sealed the zirconia surface. XRD showed an increased amount of monoclinic phase on the surface treated zirconia. However after thermal treatment, the monoclinic phase was re-transformed into the tetragonal polymorph. TEM/SAED analysis has found indication for a greater extend of the monoclinic transformation into the bulk zirconia compared to the treatment related defective zone depth.


Langmuir | 2012

Silver-assisted colloidal synthesis of stable, plasmon resonant gold patches on silica nanospheres.

Huixin Bao; Benjamin Butz; Zhou Zhou; Erdmann Spiecker; Martin Hartmann; Robin N. Klupp Taylor

Patchy particles possessing heterogeneous surface composition show great promise as self-organizing building blocks for new classes of hierarchical functional structures. A major hurdle is the scalable synthesis of stable patches on nanosized core particles with arbitrarily defined patch number and coverage. So far, few methods have been reported which could be expected to meet these challenges. Recently, we described the heterogeneous nucleation and growth of silver patches on silica nanospheres via a template free colloidal route. The patches produced, although tunable in size and number and showing interesting plasmon resonant properties, were rather unstable and degraded rapidly during attempts to process them further. In the present work, therefore, we set out to explore if related approaches can be employed to produce patchy particles involving gold, which is known to be more stable. The differences between typical patch precursors Ag(+) and [AuCl(x)(OH)(4-x)](-) and their respective interactions with amorphous silica make this a significant challenge. We show that preformed small silver patches in addition to the presence of a reducing agent are necessary for the formation of gold patches conformal to the silica nanosphere surface. Systematic study of the process parameters and their influence on the patchy particle morphology as well as in-depth analytical transmission electron microscopy investigation of the patch composition reveal that patches spread over the silica surface via a cycle of galvanic dissolution and redeposition of silver. The resulting gold patchy particles remain stable during subsequent storage or washing and display tunable plasmon resonances within the visible and near-IR spectrum.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Coexistence of both gyroid chiralities in individual butterfly wing scales of Callophrys rubi

Benjamin Winter; Benjamin Butz; Christel Dieker; Gerd E. Schröder-Turk; Klaus Mecke; Erdmann Spiecker

Significance Arthropod biophotonic nanostructures provide a plethora of complex geometries. Although the variety of geometric forms observed reflects those found in amphiphilic self-assembly, the biological formation principles are more complex. This paper addresses the chiral single gyroid in the Green Hairstreak butterfly Callophrys rubi, robustly showing that the formation process produces both the left- and right-handed enantiomers but with distinctly different likelihood. An interpretation excludes the molecular chirality of chitin as the determining feature of the enantiomeric type, emphasizing the need to identify other chirality-specific factors within the membrane-based biological formation model. These findings contribute to an understanding of nature’s ability to control secondary features of the structure formation, such as enantiomeric type and crystallographic texture, informing bioinspired self-assembly strategies. The wing scales of the Green Hairstreak butterfly Callophrys rubi consist of crystalline domains with sizes of a few micrometers, which exhibit a congenitally handed porous chitin microstructure identified as the chiral triply periodic single-gyroid structure. Here, the chirality and crystallographic texture of these domains are investigated by means of electron tomography. The tomograms unambiguously reveal the coexistence of the two enantiomeric forms of opposite handedness: the left- and right-handed gyroids. These two enantiomers appear with nonequal probabilities, implying that molecularly chiral constituents of the biological formation process presumably invoke a chiral symmetry break, resulting in a preferred enantiomeric form of the gyroid structure. Assuming validity of the formation model proposed by Ghiradella H (1989) J Morphol 202(1):69–88 and Saranathan V, et al. (2010) Proc Natl Acad Sci USA 107(26):11676–11681, where the two enantiomeric labyrinthine domains of the gyroid are connected to the extracellular and intra-SER spaces, our findings imply that the structural chirality of the single gyroid is, however, not caused by the molecular chirality of chitin. Furthermore, the wing scales are found to be highly textured, with a substantial fraction of domains exhibiting the <001> directions of the gyroid crystal aligned parallel to the scale surface normal. Both findings are needed to completely understand the photonic purpose of the single gyroid in gyroid-forming butterflies. More importantly, they show the level of control that morphogenesis exerts over secondary features of biological nanostructures, such as chirality or crystallographic texture, providing inspiration for biomimetic replication strategies for synthetic self-assembly mechanisms.


ACS Nano | 2013

Robust graphene membranes in a silicon carbide frame.

Daniel Waldmann; Benjamin Butz; Sebastian Bauer; Jan M. Englert; Johannes Jobst; Konrad Ullmann; Felix Fromm; Maximilian Ammon; Michael Enzelberger; Andreas Hirsch; Sabine Maier; Patrik Schmuki; Thomas Seyller; Erdmann Spiecker; Heiko B. Weber

We present a fabrication process for freely suspended membranes consisting of bi- and trilayer graphene grown on silicon carbide. The procedure, involving photoelectrochemical etching, enables the simultaneous fabrication of hundreds of arbitrarily shaped membranes with an area up to 500 μm(2) and a yield of around 90%. Micro-Raman and atomic force microscopy measurements confirm that the graphene layer withstands the electrochemical etching and show that the membranes are virtually unstrained. The process delivers membranes with a cleanliness suited for high-resolution transmission electron microscopy (HRTEM) at atomic scale. The membrane, and its frame, is very robust with respect to thermal cycling above 1000 °C as well as harsh acidic or alkaline treatment.

Collaboration


Dive into the Benjamin Butz's collaboration.

Top Co-Authors

Avatar

Erdmann Spiecker

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Wolfgang Peukert

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Benjamin Winter

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Christian Dolle

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Florian Niekiel

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Andreas Hirsch

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Benjamin Apeleo Zubiri

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Heiko B. Weber

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Alexandra Inayat

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Christian E. Halbig

University of Erlangen-Nuremberg

View shared research outputs
Researchain Logo
Decentralizing Knowledge