Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heiko B. Weber is active.

Publication


Featured researches published by Heiko B. Weber.


Nature Materials | 2009

Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide

Konstantin V. Emtsev; Karsten Horn; Johannes Jobst; Gary Lee Kellogg; L. Ley; Jessica L. McChesney; Taisuke Ohta; Sergey A. Reshanov; Jonas Röhrl; Eli Rotenberg; Andreas K. Schmid; Daniel Waldmann; Heiko B. Weber; Thomas Seyller

Graphene, a single monolayer of graphite, has recently attracted considerable interest owing to its novel magneto-transport properties, high carrier mobility and ballistic transport up to room temperature. It has the potential for technological applications as a successor of silicon in the post Moores law era, as a single-molecule gas sensor, in spintronics, in quantum computing or as a terahertz oscillator. For such applications, uniform ordered growth of graphene on an insulating substrate is necessary. The growth of graphene on insulating silicon carbide (SiC) surfaces by high-temperature annealing in vacuum was previously proposed to open a route for large-scale production of graphene-based devices. However, vacuum decomposition of SiC yields graphene layers with small grains (30-200 nm; refs 14-16). Here, we show that the ex situ graphitization of Si-terminated SiC(0001) in an argon atmosphere of about 1 bar produces monolayer graphene films with much larger domain sizes than previously attainable. Raman spectroscopy and Hall measurements confirm the improved quality of the films thus obtained. High electronic mobilities were found, which reach mu=2,000 cm (2) V(-1) s(-1) at T=27 K. The new growth process introduced here establishes a method for the synthesis of graphene films on a technologically viable basis.


Physical Review Letters | 2002

Driving current through single organic molecules.

Joachim Reichert; Rolf Ochs; D. Beckmann; Heiko B. Weber; Marcel Mayor; H. v. Löhneysen

We investigate electronic transport through two types of conjugated molecules. Mechanically controlled break junctions are used to couple thiol end groups of single molecules to two gold electrodes. Current-voltage characteristics ( IVs) of the metal-molecule-metal system are observed. These IVs reproduce the spatial symmetry of the molecules with respect to the direction of current flow. We hereby unambiguously detect an intrinsic property of the molecule and are able to distinguish the influence of both the molecule and the contact to the metal electrodes on the transport properties of the compound system.


Chemical Physics | 2002

Electronic transport through single conjugated molecules

Heiko B. Weber; Joachim Reichert; Florian Weigend; Rolf Ochs; D. Beckmann; Marcel Mayor; Reinhart Ahlrichs; H. v. Löhneysen

Abstract We investigate electronic transport through single conjugated molecules, and compare our data to results of quantum chemical calculations. Conductance spectra of two types of molecules are studied in a metal–molecule–metal junction established using the mechanically controlled break-junction technique. We observe a suppressed conductance at low bias, characteristic step-like features at higher voltages, and strong sample-to-sample fluctuations. We develop a quantum-chemical model for our system using DFT calculations, with the electrodes modelled by small clusters. We consider the effects of different geometries of molecule–metal configurations and bonding as well as finite electric field, and are thereby able to account for the phenomenology of the experimental data.


Applied Physics Letters | 2011

The quasi-free-standing nature of graphene on H-saturated SiC(0001)

Florian Speck; Johannes Jobst; Felix Fromm; Markus Ostler; Daniel Waldmann; Martin Hundhausen; Heiko B. Weber; Th. Seyller

We report on an investigation of quasi-free-standing graphene on 6H-SiC(0001) which was prepared by intercalation of hydrogen under the buffer layer. Using infrared absorption spectroscopy, we prove that the SiC(0001) surface is saturated with hydrogen. Raman spectra demonstrate the conversion of the buffer layer into graphene which exhibits a slight tensile strain and short range defects. The layers are hole doped (p = 5.0 − 6.5 × 1012 cm−2) with a carrier mobility of 3100 cm2/Vs at room temperature. Compared to graphene on the buffer layer, a strongly reduced temperature dependence of the mobility is observed for graphene on H-terminated SiC(0001) which justifies the term “quasi-free-standing.”


Physical Review B | 2010

Quantum oscillations and quantum Hall effect in epitaxial graphene

Johannes Jobst; Daniel Waldmann; Florian Speck; Roland Hirner; D. K. Maude; Thomas Seyller; Heiko B. Weber

Johannes Jobst, Daniel Waldmann, Florian Speck, Roland Hirner, Duncan K. Maude, Thomas Seyller, and Heiko B. Weber ∗ Lehrstuhl für Angewandte Physik, Universität Erlangen-Nürnberg, 91056 Erlangen, Germany Lehrstuhl für Technische Physik, Universität Erlangen-Nürnberg, 91056 Erlangen, Germany Laboratoire des Champs Magnétiques Intenses, 25 Avenue des Martyrs, 38042 Grenoble,France (Dated: August 14, 2009)


Physical Review Letters | 2004

Evidence for Crossed Andreev Reflection in Superconductor-Ferromagnet Hybrid Structures

D. Beckmann; Heiko B. Weber; H. v. Löhneysen

We have measured the nonlocal resistance of aluminum-iron spin-valve structures fabricated by e-beam lithography and shadow evaporation. The sample geometry consists of an aluminum bar with two or more ferromagnetic wires forming point contacts to the aluminum at varying distances from each other. In the normal state of aluminum, we observe a spin-valve signal which allows us to control the relative orientation of the magnetizations of the ferromagnetic contacts. In the superconducting state, at low temperatures and excitation voltages well below the gap, we observe a spin-dependent nonlocal resistance which decays on a smaller length scale than the normal-state spin-valve signal. The sign, magnitude, and decay length of this signal are consistent with predictions made for crossed Andreev reflection.


Physical Review Letters | 2012

Experimental Evidence for Quantum Interference and Vibrationally Induced Decoherence in Single-Molecule Junctions

Stefan Ballmann; R. Härtle; Pedro B. Coto; Mark Elbing; Marcel Mayor; Martin R. Bryce; Michael Thoss; Heiko B. Weber

We analyze quantum interference and decoherence effects in single-molecule junctions both experimentally and theoretically by means of the mechanically controlled break junction technique and density-functional theory. We consider the case where interference is provided by overlapping quasidegenerate states. Decoherence mechanisms arising from electronic-vibrational coupling strongly affect the electrical current flowing through a single-molecule contact and can be controlled by temperature variation. Our findings underline the universal relevance of vibrations for understanding charge transport through molecular junctions.


Applied Physics Letters | 2003

Low-temperature conductance measurements on single molecules

Joachim Reichert; Heiko B. Weber; Marcel Mayor; H. v. Löhneysen

An experimental protocol which allows to perform conductance spectroscopy on organic molecules at low temperatures (T≈30 K) has been developed. This extends the method of mechanically controlled break junctions which has recently demonstrated to be suitable to contact single molecules at room temperature. The conductance data obtained at low T with a conjugated sample molecule show a highly improved data quality with a higher stability, narrower linewidth, and substantially reduced noise. Thus, the comparability of experimental data with other measurements as well as with theoretical simulations is considerably improved.


Nature | 2014

Dislocations in bilayer graphene

Benjamin Butz; Christian Dolle; Florian Niekiel; Konstantin Weber; Daniel Waldmann; Heiko B. Weber; Bernd Meyer; Erdmann Spiecker

Dislocations represent one of the most fascinating and fundamental concepts in materials science. Most importantly, dislocations are the main carriers of plastic deformation in crystalline materials. Furthermore, they can strongly affect the local electronic and optical properties of semiconductors and ionic crystals. In materials with small dimensions, they experience extensive image forces, which attract them to the surface to release strain energy. However, in layered crystals such as graphite, dislocation movement is mainly restricted to the basal plane. Thus, the dislocations cannot escape, enabling their confinement in crystals as thin as only two monolayers. To explore the nature of dislocations under such extreme boundary conditions, the material of choice is bilayer graphene, the thinnest possible quasi-two-dimensional crystal in which such linear defects can be confined. Homogeneous and robust graphene membranes derived from high-quality epitaxial graphene on silicon carbide provide an ideal platform for their investigation. Here we report the direct observation of basal-plane dislocations in freestanding bilayer graphene using transmission electron microscopy and their detailed investigation by diffraction contrast analysis and atomistic simulations. Our investigation reveals two striking size effects. First, the absence of stacking-fault energy, a unique property of bilayer graphene, leads to a characteristic dislocation pattern that corresponds to an alternating AB  AC change of the stacking order. Second, our experiments in combination with atomistic simulations reveal a pronounced buckling of the bilayer graphene membrane that results directly from accommodation of strain. In fact, the buckling changes the strain state of the bilayer graphene and is of key importance for its electronic properties. Our findings will contribute to the understanding of dislocations and of their role in the structural, mechanical and electronic properties of bilayer and few-layer graphene.


Nature Communications | 2012

Tailoring the graphene/silicon carbide interface for monolithic wafer-scale electronics

Stefan Hertel; Daniel Waldmann; Johannes Jobst; A. Albert; M. Albrecht; Sergey A. Reshanov; Adolf Schöner; Michael Krieger; Heiko B. Weber

Graphene is an outstanding electronic material, predicted to have a role in post-silicon electronics. However, owing to the absence of an electronic bandgap, graphene switching devices with high on/off ratio are still lacking. Here in the search for a comprehensive concept for wafer-scale graphene electronics, we present a monolithic transistor that uses the entire material system epitaxial graphene on silicon carbide (0001). This system consists of the graphene layer with its vanishing energy gap, the underlying semiconductor and their common interface. The graphene/semiconductor interfaces are tailor-made for ohmic as well as for Schottky contacts side-by-side on the same chip. We demonstrate normally on and normally off operation of a single transistor with on/off ratios exceeding 10(4) and no damping at megahertz frequencies. In its simplest realization, the fabrication process requires only one lithography step to build transistors, diodes, resistors and eventually integrated circuits without the need of metallic interconnects.

Collaboration


Dive into the Heiko B. Weber's collaboration.

Top Co-Authors

Avatar

Michael Krieger

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johannes Jobst

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Daniel Waldmann

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Gerhard Pensl

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

H. v. Löhneysen

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

D. Beckmann

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Sergey A. Reshanov

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Stefan Hertel

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Thomas Seyller

Chemnitz University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge