Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin Currall is active.

Publication


Featured researches published by Benjamin Currall.


Nature Genetics | 2017

SMCHD1 mutations associated with a rare muscular dystrophy can also cause isolated arhinia and Bosma arhinia microphthalmia syndrome

Natalie D. Shaw; Harrison Brand; Zachary A. Kupchinsky; Hemant Bengani; Lacey Plummer; Takako I. Jones; Serkan Erdin; Kathleen A. Williamson; Joe Rainger; Alexei Stortchevoi; Kaitlin E. Samocha; Benjamin Currall; Donncha S. Dunican; Ryan L. Collins; Jason R. Willer; Angela Lek; Monkol Lek; Malik Nassan; Shahrin Pereira; Tammy Kammin; Diane Lucente; Alexandra Silva; Catarina M. Seabra; Colby Chiang; Yu An; Morad Ansari; Jacqueline K. Rainger; Shelagh Joss; Jill Clayton Smith; Margaret F. Lippincott

Arhinia, or absence of the nose, is a rare malformation of unknown etiology that is often accompanied by ocular and reproductive defects. Sequencing of 40 people with arhinia revealed that 84% of probands harbor a missense mutation localized to a constrained region of SMCHD1 encompassing the ATPase domain. SMCHD1 mutations cause facioscapulohumeral muscular dystrophy type 2 (FSHD2) via a trans-acting loss-of-function epigenetic mechanism. We discovered shared mutations and comparable DNA hypomethylation patterning between these distinct disorders. CRISPR/Cas9-mediated alteration of smchd1 in zebrafish yielded arhinia-relevant phenotypes. Transcriptome and protein analyses in arhinia probands and controls showed no differences in SMCHD1 mRNA or protein abundance but revealed regulatory changes in genes and pathways associated with craniofacial patterning. Mutations in SMCHD1 thus contribute to distinct phenotypic spectra, from craniofacial malformation and reproductive disorders to muscular dystrophy, which we speculate to be consistent with oligogenic mechanisms resulting in pleiotropic outcomes.


Brain Research | 2006

Studying inner ear protein–protein interactions using FRET and FLIM

Richard Hallworth; Benjamin Currall; Michael G. Nichols; Xudong Wu; Jian Zuo

Molecular genetic studies of the inner ear have recently revealed a large number of previously undescribed proteins, but their functions remain unclear. Optical methods such as FRET and FLIM are just beginning to be applied to the study of functional interactions between novel inner ear proteins. This review discusses the various methods for employing FRET and FLIM in protein-protein interaction studies, their advantages and pitfalls, with examples drawn from inner ear studies.


Journal of Neurophysiology | 2011

The roles of conserved and nonconserved cysteinyl residues in the oligomerization and function of mammalian prestin

Benjamin Currall; Danielle Rossino; Heather Jensen-Smith; Richard Hallworth

The creation of several prestin knockout and knockin mouse lines has demonstrated the importance of the intrinsic outer hair cell membrane protein prestin to mammalian hearing. However, the structure of prestin remains largely unknown, with even its major features in dispute. Several studies have suggested that prestin forms homo-oligomers that may be stabilized by disulfide bonds. Our phylogenetic analysis of prestin sequences across chordate classes suggested that the cysteinyl residues could be divided into three groups, depending on the extent of their conservation between prestin orthologs and paralogs or homologs. An alanine scan functional analysis was performed of all nine cysteinyl positions in mammalian prestin. Prestin function was assayed by measurement of prestin-associated nonlinear capacitance. Of the nine cysteine-alanine substitution mutations, all were properly membrane targeted and all demonstrated nonlinear capacitance. Four mutations (C124A, C192A, C260A, and C415A), all in nonconserved cysteinyl residues, significantly differed in their nonlinear capacitance properties compared with wild-type prestin. In the two most severely disrupted mutations, substitution of the polar residue seryl for cysteinyl restored normal function in one (C415S) but not the other (C124S). We assessed the relationship of prestin oligomerization to cysteine position using fluorescence resonance energy transfer. With one exception, cysteine-alanine substitutions did not significantly alter prestin-prestin interactions. The exception was C415A, one of the two nonconserved cysteinyl residues whose mutation to alanine caused the most disruption in function. We suggest that no disulfide bond is essential for prestin function. However, C415 likely participates by hydrogen bonding in both nonlinear capacitance and oligomerization.


Current Genetic Medicine Reports | 2013

Mechanisms for Structural Variation in the Human Genome.

Benjamin Currall; Colby Chiang; Michael E. Talkowski; Cynthia C. Morton

It has been known for several decades that genetic variation involving changes to chromosomal structure (i.e., structural variants) can contribute to disease; however this relationship has been brought into acute focus in recent years largely based on innovative new genomics approaches and technology. Structural variants (SVs) arise from improperly repaired DNA double-strand breaks (DSB). DSBs are a frequent occurrence in all cells and two major pathways are involved in their repair: homologous recombination and non-homologous end joining. Errors during these repair mechanisms can result in SVs that involve losses, gains and rearrangements ranging from a few nucleotides to entire chromosomal arms. Factors such as rearrangements, hotspots and induced DSBs are implicated in the formation of SVs. While de novo SVs are often associated with disease, some SVs are conserved within human subpopulations and may have had a meaningful influence on primate evolution. As the ability to sequence the whole human genome rapidly evolves, the diversity of SVs is illuminated, including very complex rearrangements involving multiple DSBs in a process recently designated as “chromothripsis”. Elucidating mechanisms involved in the etiology of SVs informs disease pathogenesis as well as the dynamic function associated with the biology and evolution of human genomes.


Microscopy and Microanalysis | 2013

The Conserved Tetrameric Subunit Stoichiometry of Slc26 Proteins

Richard Hallworth; Kelsey Stark; Lyandysha V. Zholudeva; Benjamin Currall; Michael G. Nichols

The Slc26 family proteins, with one possible exception, transport anions across membranes in a wide variety of tissues in vertebrates, invertebrates, and plants. Mutations in human members of the family are a significant cause of disease. Slc26 family proteins are thought to be oligomers, but their stoichiometry of association is in dispute. A recent study, using sequential bleaching of single fluorophore-coupled molecules in membrane fragments, demonstrated that mammalian Slc26a5 (prestin) is a tetramer. In this article, the stoichiometry of two nonmammalian prestins and three human SLC26 proteins has been analyzed by the same method, including the evolutionarily-distant SLC26A11. The analysis showed that tetramerization is common and likely to be ubiquitous among Slc26 proteins, at least in vertebrates. The implication of the findings is that tetramerization is present for functional reasons.


Proceedings of the National Academy of Sciences of the United States of America | 2016

ROR1 is essential for proper innervation of auditory hair cells and hearing in humans and mice

Oscar Diaz-Horta; Clemer Abad; Levent Sennaroglu; Joseph Foster; Alexandra DeSmidt; Guney Bademci; Suna Tokgoz-Yilmaz; Duygu Duman; F. Basak Cengiz; M’hamed Grati; Suat Fitoz; Xue Zhong Liu; Amjad Farooq; Faiqa Imtiaz; Benjamin Currall; Cynthia C. Morton; Michiru Nishita; Yasuhiro Minami; Zhongmin Lu; Katherina Walz; Mustafa Tekin

Significance The inner ear is a vertebrate organ of delicate and complex architecture that translates sound into electrical signals deciphered by the brain. This study utilizes a genetic approach to associate a mutation of ROR1 (receptor tyrosine kinase-like orphan receptor 1) with inner ear anomalies and deafness in humans. Characterization of Ror1 mutant mice reveals fasciculation deficiencies of spiral ganglion axons and disruption of sensory hair cell synapses and peripheral innervations. The molecular basis of this phenotype involves alterations of the NF-κB pathway. Thus, we present ROR1 as a previously unrecognized gene that is essential for the development of the inner ear and hearing in humans and mice. Hair cells of the inner ear, the mechanosensory receptors, convert sound waves into neural signals that are passed to the brain via the auditory nerve. Little is known about the molecular mechanisms that govern the development of hair cell–neuronal connections. We ascertained a family with autosomal recessive deafness associated with a common cavity inner ear malformation and auditory neuropathy. Via whole-exome sequencing, we identified a variant (c.2207G>C, p.R736T) in ROR1 (receptor tyrosine kinase-like orphan receptor 1), cosegregating with deafness in the family and absent in ethnicity-matched controls. ROR1 is a tyrosine kinase-like receptor localized at the plasma membrane. At the cellular level, the mutation prevents the protein from reaching the cellular membrane. In the presence of WNT5A, a known ROR1 ligand, the mutated ROR1 fails to activate NF-κB. Ror1 is expressed in the inner ear during development at embryonic and postnatal stages. We demonstrate that Ror1 mutant mice are severely deaf, with preserved otoacoustic emissions. Anatomically, mutant mice display malformed cochleae. Axons of spiral ganglion neurons show fasciculation defects. Type I neurons show impaired synapses with inner hair cells, and type II neurons display aberrant projections through the cochlear sensory epithelium. We conclude that Ror1 is crucial for spiral ganglion neurons to innervate auditory hair cells. Impairment of ROR1 function largely affects development of the inner ear and hearing in humans and mice.


Nature Genetics | 2018

An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder

Donna M. Werling; Harrison Brand; Joon Yong An; Matthew R. Stone; Lingxue Zhu; Joseph T. Glessner; Ryan L. Collins; Shan Dong; Ryan M. Layer; Eirene Markenscoff-Papadimitriou; Andrew Farrell; Grace B. Schwartz; H. Wang; Benjamin Currall; Xuefang Zhao; Jeanselle Dea; Clif Duhn; Carolyn A. Erdman; Michael Gilson; Rachita Yadav; Robert E. Handsaker; Seva Kashin; Lambertus Klei; Jeffrey D. Mandell; Tomasz J. Nowakowski; Yuwen Liu; Sirisha Pochareddy; Louw Smith; Michael F. Walker; Matthew J. Waterman

Genomic association studies of common or rare protein-coding variation have established robust statistical approaches to account for multiple testing. Here we present a comparable framework to evaluate rare and de novo noncoding single-nucleotide variants, insertion/deletions, and all classes of structural variation from whole-genome sequencing (WGS). Integrating genomic annotations at the level of nucleotides, genes, and regulatory regions, we define 51,801 annotation categories. Analyses of 519 autism spectrum disorder families did not identify association with any categories after correction for 4,123 effective tests. Without appropriate correction, biologically plausible associations are observed in both cases and controls. Despite excluding previously identified gene-disrupting mutations, coding regions still exhibited the strongest associations. Thus, in autism, the contribution of de novo noncoding variation is probably modest in comparison to that of de novo coding variants. Robust results from future WGS studies will require large cohorts and comprehensive analytical strategies that consider the substantial multiple-testing burden.This study presents a framework to evaluate rare and de novo variation from whole-genome sequencing (WGS). The work suggests that robust results from WGS studies will require large cohorts and strategies that consider the substantial multiple-testing burden.


bioRxiv | 2017

Limited contribution of rare, noncoding variation to autism spectrum disorder from sequencing of 2,076 genomes in quartet families

Donna M. Werling; Harrison Brand; Joon Yong An; Matthew R. Stone; Joseph T. Glessner; Lingxue Zhu; Ryan L. Collins; Shan Dong; Ryan M. Layer; Eiriene-Chloe Markenscoff-Papadimitriou; Andrew Farrell; Grace B. Schwartz; Benjamin Currall; Jeanselle Dea; Clif Duhn; Carolyn A. Erdman; Michael Gilson; Robert E. Handsaker; Seva Kashin; Lambertus Klei; Jeffrey D. Mandell; Tomasz J. Nowakowski; Yuwen Liu; Sirisha Pochareddy; Louw Smith; Michael F. Walker; H. Wang; Mathew J Waterman; Xin He; Arnold R. Kriegstein

Genomic studies to date in autism spectrum disorder (ASD) have largely focused on newly arising mutations that disrupt protein coding sequence and strongly influence risk. We evaluate the contribution of noncoding regulatory variation across the size and frequency spectrum through whole genome sequencing of 519 ASD cases, their unaffected sibling controls, and parents. Cases carry a small excess of de novo (1.02-fold) noncoding variants, which is not significant after correcting for paternal age. Assessing 51,801 regulatory classes, no category is significantly associated with ASD after correction for multiple testing. The strongest signals are observed in coding regions, including structural variation not detected by previous technologies and missense variation. While rare noncoding variation likely contributes to risk in neurodevelopmental disorders, no category of variation has impact equivalent to loss-of-function mutations. Average effect sizes are likely to be smaller than that for coding variation, requiring substantially larger samples to quantify this risk.


Hearing Research | 2007

Streptomycin and gentamicin have no immediate effect on outer hair cell electromotility.

Xiang Wang; Shuping Jia; Benjamin Currall; Shiming Yang; David Z. Z. He

The cochlear outer hair cell (OHC), which plays a crucial role in mammalian hearing through its unique voltage-dependent motility, has been established as a primary target of the ototoxicity of aminoglycoside antibiotics. These polycationic drugs are also known to block a wide variety of ion channels, purinergic ionotropic channels, and nicotinic ACh receptors in hair cells in vitro. The OHC motor protein, prestin, is a voltage-sensitive transmembrane protein containing several negatively charged residues on both intra- and extracellular surface. The acidic sites may be susceptible to polycationic-charged aminoglycoside binding, which may result in disruption of motility. We attempted to examine whether aminoglycosides such as streptomycin and gentamicin could affect OHC motility and its electrical signature, the nonlinear capacitance (NLC) in adult gerbil OHCs. Somatic motility and NLC were measured under the whole-cell voltage-clamp mode. Streptomycin and gentamicin were applied extracellularly or intracellularly. Results show that streptomycin and gentamicin did not change either the magnitude of motility or the NLC. Theses results suggest that, although streptomycin and gentamicin can block mechanotransduction channels as well as ACh receptors in hair cells, they have no direct affect on OHC somatic motility.


international conference on bioinformatics | 2010

An intelligent data-centric approach toward identification of conserved motifs in protein sequences

Kathryn Dempsey; Benjamin Currall; Richard Hallworth; Hesham H. Ali

The continued integration of the computational and biological sciences has revolutionized genomic and proteomic studies. However, efficient collaboration between these fields requires the creation of shared standards. A common problem arises when biological input does not properly fit the expectations of the algorithm, which can result in misinterpretation of the output. This potential confounding of input/output is a drawback especially when regarding motif finding software. Here we propose a method for improving output by selecting input based upon evolutionary distance, domain architecture, and known function. This method improved detection of both known and unknown motifs in two separate case studies. By standardizing input considerations, both biologists and bioinformaticians can better interpret and design the evolving sophistication of bioinformatic software.

Collaboration


Dive into the Benjamin Currall's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colby Chiang

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Tammy Kammin

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge