Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryan L. Collins is active.

Publication


Featured researches published by Ryan L. Collins.


Cell Stem Cell | 2014

Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9

Pankaj K. Mandal; Leonardo M. R. Ferreira; Ryan L. Collins; Torsten B. Meissner; Christian L. Boutwell; Max Friesen; Vladimir Vrbanac; Brian S. Garrison; Alexei Stortchevoi; David Bryder; Kiran Musunuru; Harrison Brand; Andrew M. Tager; Todd M. Allen; Michael E. Talkowski; Derrick J. Rossi; Chad A. Cowan

Genome editing via CRISPR/Cas9 has rapidly become the tool of choice by virtue of its efficacy and ease of use. However, CRISPR/Cas9-mediated genome editing in clinically relevant human somatic cells remains untested. Here, we report CRISPR/Cas9 targeting of two clinically relevant genes, B2M and CCR5, in primary human CD4+ T cells and CD34+ hematopoietic stem and progenitor cells (HSPCs). Use of single RNA guides led to highly efficient mutagenesis in HSPCs but not in T cells. A dual guide approach improved gene deletion efficacy in both cell types. HSPCs that had undergone genome editing with CRISPR/Cas9 retained multilineage potential. We examined predicted on- and off-target mutations via target capture sequencing in HSPCs and observed low levels of off-target mutagenesis at only one site. These results demonstrate that CRISPR/Cas9 can efficiently ablate genes in HSPCs with minimal off-target mutagenesis, which could have broad applicability for hematopoietic cell-based therapy.


Nature | 2015

Loss of δ-catenin function in severe autism

Tychele N. Turner; Kamal Sharma; Edwin C. Oh; Yangfan P. Liu; Ryan L. Collins; Maria X. Sosa; Dallas R. Auer; Harrison Brand; Stephan J. Sanders; Daniel Moreno-De-Luca; Vasyl Pihur; Teri Plona; Kristen Pike; Daniel R. Soppet; Michael W. Smith; Sau Wai Cheung; Christa Lese Martin; Matthew W. State; Michael E. Talkowski; Edwin H. Cook; Richard L. Huganir; Nicholas Katsanis; Aravinda Chakravarti

Autism is a multifactorial neurodevelopmental disorder affecting more males than females; consequently, under a multifactorial genetic hypothesis, females are affected only when they cross a higher biological threshold. We hypothesize that deleterious variants at conserved residues are enriched in severely affected patients arising from female-enriched multiplex families with severe disease, enhancing the detection of key autism genes in modest numbers of cases. Here we show the use of this strategy by identifying missense and dosage sequence variants in the gene encoding the adhesive junction-associated δ-catenin protein (CTNND2) in female-enriched multiplex families and demonstrating their loss-of-function effect by functional analyses in zebrafish embryos and cultured hippocampal neurons from wild-type and Ctnnd2 null mouse embryos. Finally, through gene expression and network analyses, we highlight a critical role for CTNND2 in neuronal development and an intimate connection to chromatin biology. Our data contribute to the understanding of the genetic architecture of autism and suggest that genetic analyses of phenotypic extremes, such as female-enriched multiplex families, are of innate value in multifactorial disorders.


Journal of the American Medical Informatics Association | 2013

An information-gain approach to detecting three-way epistatic interactions in genetic association studies

Ting Hu; Yuanzhu Peter Chen; Jeff Kiralis; Ryan L. Collins; Christian Wejse; Giorgio Sirugo; Scott M. Williams; Jason H. Moore

Background Epistasis has been historically used to describe the phenomenon that the effect of a given gene on a phenotype can be dependent on one or more other genes, and is an essential element for understanding the association between genetic and phenotypic variations. Quantifying epistasis of orders higher than two is very challenging due to both the computational complexity of enumerating all possible combinations in genome-wide data and the lack of efficient and effective methodologies. Objectives In this study, we propose a fast, non-parametric, and model-free measure for three-way epistasis. Methods Such a measure is based on information gain, and is able to separate all lower order effects from pure three-way epistasis. Results Our method was verified on synthetic data and applied to real data from a candidate-gene study of tuberculosis in a West African population. In the tuberculosis data, we found a statistically significant pure three-way epistatic interaction effect that was stronger than any lower-order associations. Conclusion Our study provides a methodological basis for detecting and characterizing high-order gene-gene interactions in genetic association studies.


Biodata Mining | 2013

Multifactor dimensionality reduction reveals a three-locus epistatic interaction associated with susceptibility to pulmonary tuberculosis.

Ryan L. Collins; Ting Hu; Christian Wejse; Giorgio Sirugo; Scott M. Williams; Jason H. Moore

BackgroundIdentifying high-order genetics associations with non-additive (i.e. epistatic) effects in population-based studies of common human diseases is a computational challenge. Multifactor dimensionality reduction (MDR) is a machine learning method that was designed specifically for this problem. The goal of the present study was to apply MDR to mining high-order epistatic interactions in a population-based genetic study of tuberculosis (TB).ResultsThe study used a previously published data set consisting of 19 candidate single-nucleotide polymorphisms (SNPs) in 321 pulmonary TB cases and 347 healthy controls from Guniea-Bissau in Africa. The ReliefF algorithm was applied first to generate a smaller set of the five most informative SNPs. MDR with 10-fold cross-validation was then applied to look at all possible combinations of two, three, four and five SNPs. The MDR model with the best testing accuracy (TA) consisted of SNPs rs2305619, rs187084, and rs11465421 (TA = 0.588) in PTX3, TLR9 and DC-Sign, respectively. A general 1000-fold permutation test of the null hypothesis of no association confirmed the statistical significance of the model (p = 0.008). An additional 1000-fold permutation test designed specifically to test the linear null hypothesis that the association effects are only additive confirmed the presence of non-additive (i.e. nonlinear) or epistatic effects (p = 0.013). An independent information-gain measure corroborated these results with a third-order epistatic interaction that was stronger than any lower-order associations.ConclusionsWe have identified statistically significant evidence for a three-way epistatic interaction that is associated with susceptibility to TB. This interaction is stronger than any previously described one-way or two-way associations. This study highlights the importance of using machine learning methods that are designed to embrace, rather than ignore, the complexity of common diseases such as TB. We recommend future studies of the genetics of TB take into account the possibility that high-order epistatic interactions might play an important role in disease susceptibility.


Nature Genetics | 2017

SMCHD1 mutations associated with a rare muscular dystrophy can also cause isolated arhinia and Bosma arhinia microphthalmia syndrome

Natalie D. Shaw; Harrison Brand; Zachary A. Kupchinsky; Hemant Bengani; Lacey Plummer; Takako I. Jones; Serkan Erdin; Kathleen A. Williamson; Joe Rainger; Alexei Stortchevoi; Kaitlin E. Samocha; Benjamin Currall; Donncha S. Dunican; Ryan L. Collins; Jason R. Willer; Angela Lek; Monkol Lek; Malik Nassan; Shahrin Pereira; Tammy Kammin; Diane Lucente; Alexandra Silva; Catarina M. Seabra; Colby Chiang; Yu An; Morad Ansari; Jacqueline K. Rainger; Shelagh Joss; Jill Clayton Smith; Margaret F. Lippincott

Arhinia, or absence of the nose, is a rare malformation of unknown etiology that is often accompanied by ocular and reproductive defects. Sequencing of 40 people with arhinia revealed that 84% of probands harbor a missense mutation localized to a constrained region of SMCHD1 encompassing the ATPase domain. SMCHD1 mutations cause facioscapulohumeral muscular dystrophy type 2 (FSHD2) via a trans-acting loss-of-function epigenetic mechanism. We discovered shared mutations and comparable DNA hypomethylation patterning between these distinct disorders. CRISPR/Cas9-mediated alteration of smchd1 in zebrafish yielded arhinia-relevant phenotypes. Transcriptome and protein analyses in arhinia probands and controls showed no differences in SMCHD1 mRNA or protein abundance but revealed regulatory changes in genes and pathways associated with craniofacial patterning. Mutations in SMCHD1 thus contribute to distinct phenotypic spectra, from craniofacial malformation and reproductive disorders to muscular dystrophy, which we speculate to be consistent with oligogenic mechanisms resulting in pleiotropic outcomes.


Nature Neuroscience | 2016

Engineering microdeletions and microduplications by targeting segmental duplications with CRISPR

Derek J C Tai; Ashok Ragavendran; Poornima Manavalan; Alexei Stortchevoi; Catarina M. Seabra; Serkan Erdin; Ryan L. Collins; Ian Blumenthal; Xiaoli Chen; Yiping Shen; Mustafa Sahin; Chengsheng Zhang; Charles Lee; James F. Gusella; Michael E. Talkowski

Recurrent, reciprocal genomic disorders resulting from non-allelic homologous recombination (NAHR) between near-identical segmental duplications (SDs) are a major cause of human disease, often producing phenotypically distinct syndromes. The genomic architecture of flanking SDs presents a challenge for modeling these syndromes; however, the capability to efficiently generate reciprocal copy number variants (CNVs) that mimic NAHR would represent a valuable modeling tool. We describe here a CRISPR/Cas9 genome engineering method, single-guide CRISPR/Cas targeting of repetitive elements (SCORE), to model reciprocal genomic disorders and demonstrate its capabilities by generating reciprocal CNVs of 16p11.2 and 15q13.3, including alteration of one copy-equivalent of the SDs that mediate NAHR in vivo. The method is reproducible, and RNA sequencing reliably clusters transcriptional signatures from human subjects with in vivo CNVs and their corresponding in vitro models. This new approach will provide broad applicability for the study of genomic disorders and, with further development, may also permit efficient correction of these defects.


Nature Genetics | 2018

An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder

Donna M. Werling; Harrison Brand; Joon Yong An; Matthew R. Stone; Lingxue Zhu; Joseph T. Glessner; Ryan L. Collins; Shan Dong; Ryan M. Layer; Eirene Markenscoff-Papadimitriou; Andrew Farrell; Grace B. Schwartz; H. Wang; Benjamin Currall; Xuefang Zhao; Jeanselle Dea; Clif Duhn; Carolyn A. Erdman; Michael Gilson; Rachita Yadav; Robert E. Handsaker; Seva Kashin; Lambertus Klei; Jeffrey D. Mandell; Tomasz J. Nowakowski; Yuwen Liu; Sirisha Pochareddy; Louw Smith; Michael F. Walker; Matthew J. Waterman

Genomic association studies of common or rare protein-coding variation have established robust statistical approaches to account for multiple testing. Here we present a comparable framework to evaluate rare and de novo noncoding single-nucleotide variants, insertion/deletions, and all classes of structural variation from whole-genome sequencing (WGS). Integrating genomic annotations at the level of nucleotides, genes, and regulatory regions, we define 51,801 annotation categories. Analyses of 519 autism spectrum disorder families did not identify association with any categories after correction for 4,123 effective tests. Without appropriate correction, biologically plausible associations are observed in both cases and controls. Despite excluding previously identified gene-disrupting mutations, coding regions still exhibited the strongest associations. Thus, in autism, the contribution of de novo noncoding variation is probably modest in comparison to that of de novo coding variants. Robust results from future WGS studies will require large cohorts and comprehensive analytical strategies that consider the substantial multiple-testing burden.This study presents a framework to evaluate rare and de novo variation from whole-genome sequencing (WGS). The work suggests that robust results from WGS studies will require large cohorts and strategies that consider the substantial multiple-testing burden.


bioRxiv | 2017

Limited contribution of rare, noncoding variation to autism spectrum disorder from sequencing of 2,076 genomes in quartet families

Donna M. Werling; Harrison Brand; Joon Yong An; Matthew R. Stone; Joseph T. Glessner; Lingxue Zhu; Ryan L. Collins; Shan Dong; Ryan M. Layer; Eiriene-Chloe Markenscoff-Papadimitriou; Andrew Farrell; Grace B. Schwartz; Benjamin Currall; Jeanselle Dea; Clif Duhn; Carolyn A. Erdman; Michael Gilson; Robert E. Handsaker; Seva Kashin; Lambertus Klei; Jeffrey D. Mandell; Tomasz J. Nowakowski; Yuwen Liu; Sirisha Pochareddy; Louw Smith; Michael F. Walker; H. Wang; Mathew J Waterman; Xin He; Arnold R. Kriegstein

Genomic studies to date in autism spectrum disorder (ASD) have largely focused on newly arising mutations that disrupt protein coding sequence and strongly influence risk. We evaluate the contribution of noncoding regulatory variation across the size and frequency spectrum through whole genome sequencing of 519 ASD cases, their unaffected sibling controls, and parents. Cases carry a small excess of de novo (1.02-fold) noncoding variants, which is not significant after correcting for paternal age. Assessing 51,801 regulatory classes, no category is significantly associated with ASD after correction for multiple testing. The strongest signals are observed in coding regions, including structural variation not detected by previous technologies and missense variation. While rare noncoding variation likely contributes to risk in neurodevelopmental disorders, no category of variation has impact equivalent to loss-of-function mutations. Average effect sizes are likely to be smaller than that for coding variation, requiring substantially larger samples to quantify this risk.


Neurodegenerative Diseases | 2016

Mutated Huntingtin Causes Testicular Pathology in Transgenic Minipig Boars

Monika Macakova; Bozena Bohuslavova; Petra Vochozkova; Antonin Pavlok; Daniela Vidinska; Klara Vochyanova; Irena Liskova; Ivona Valekova; Monika Baxa; Zdenka Ellederova; Jiri Klima; Stefan Juhas; Jana Juhasova; Jana Klouckova; Martin Haluzik; Jiri Klempir; Hana Hansikova; Jana Spacilova; Ryan L. Collins; Ian Blumenthal; Michael E. Talkowski; James F. Gusella; David Howland; Marian DiFiglia; Jan Motlik

Background: Huntingtons disease is induced by CAG expansion in a single gene coding the huntingtin protein. The mutated huntingtin (mtHtt) primarily causes degeneration of neurons in the brain, but it also affects peripheral tissues, including testes. Objective: We studied sperm and testes of transgenic boars expressing the N-terminal region of human mtHtt. Methods: In this study, measures of reproductive parameters and electron microscopy (EM) images of spermatozoa and testes of transgenic (TgHD) and wild-type (WT) boars of F1 (24-48 months old) and F2 (12-36 months old) generations were compared. In addition, immunofluorescence, immunohistochemistry, Western blot, hormonal analysis and whole-genome sequencing were done in order to elucidate the effects of mtHtt. Results: Evidence for fertility failure of both TgHD generations was observed at the age of 13 months. Reproductive parameters declined and progressively worsened with age. EM revealed numerous pathological features in sperm tails and in testicular epithelium from 24- and 36-month-old TgHD boars. Moreover, immunohistochemistry confirmed significantly lower proliferation activity of spermatogonia in transgenic testes. mtHtt was highly expressed in spermatozoa and testes of TgHD boars and localized in all cells of seminiferous tubules. Levels of fertility-related hormones did not differ in TgHD and WT siblings. Genome analysis confirmed that insertion of the lentiviral construct did not interrupt any coding sequence in the pig genome. Conclusions: The sperm and testicular degeneration of TgHD boars is caused by gain-of-function of the highly expressed mtHtt.


American Journal of Medical Genetics Part A | 2017

Implication of LRRC4C and DPP6 in neurodevelopmental disorders

Gilles Maussion; Cristiana Cruceanu; Jill A. Rosenfeld; Scott Bell; Fabrice Jollant; Jin P. Szatkiewicz; Ryan L. Collins; Carrie Hanscom; Ilaria Kolobova; Nicolas Menjot de Champfleur; Ian Blumenthal; Colby Chiang; Vanessa Ota; Christina M. Hultman; Colm O'Dushlaine; Steve McCarroll; Martin Alda; Sébastien Jacquemont; Zehra Ordulu; Christian R. Marshall; Melissa T. Carter; Lisa G. Shaffer; Pamela Sklar; Santhosh Girirajan; Cynthia C. Morton; James F. Gusella; Gustavo Turecki; Dimitri J. Stavropoulos; Patrick F. Sullivan; Stephen W. Scherer

We performed whole‐genome sequencing on an individual from a family with variable psychiatric phenotypes that had a sensory processing disorder, apraxia, and autism. The proband harbored a maternally inherited balanced translocation (46,XY,t(11;14)(p12;p12)mat) that disrupted LRRC4C, a member of the highly specialized netrin G family of axon guidance molecules. The proband also inherited a paternally derived chromosomal inversion that disrupted DPP6, a potassium channel interacting protein. Copy Number (CN) analysis in 14,077 cases with neurodevelopmental disorders and 8,960 control subjects revealed that 60% of cases with exonic deletions in LRRC4C had a second clinically recognizable syndrome associated with variable clinical phenotypes, including 16p11.2, 1q44, and 2q33.1 CN syndromes, suggesting LRRC4C deletion variants may be modifiers of neurodevelopmental disorders. In vitro, functional assessments modeling patient deletions in LRRC4C suggest a negative regulatory role of these exons found in the untranslated region of LRRC4C, which has a single, terminal coding exon. These data suggest that the probands autism may be due to the inheritance of disruptions in both DPP6 and LRRC4C, and may highlight the importance of the netrin G family and potassium channel interacting molecules in neurodevelopmental disorders.

Collaboration


Dive into the Ryan L. Collins's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tammy Kammin

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge