Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin D. Fairbanks is active.

Publication


Featured researches published by Benjamin D. Fairbanks.


Biomaterials | 2009

Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility

Benjamin D. Fairbanks; Michael P. Schwartz; Christopher N. Bowman; Kristi S. Anseth

Due to mild reaction conditions and temporal and spatial control over material formation, photopolymerization has become a valuable technique for the encapsulation of living cells in three dimensional, hydrated, biomimetic materials. For such applications, 2-hydroxy-1-[4-(2-hydroxyethoxy) phenyl]-2-methyl-1-propanone (I2959) is the most commonly used photoinitiator (by virtue of its moderate water solubility), yet this initiator has an absorption spectrum that is poorly matched with wavelengths of light generally regarded as benign to living cells, limiting the rate at which it may initiate polymerization in their presence. In contrast, acylphosphine oxide photoinitiators, generally exhibit absorption spectra at wavelengths suitable for cell encapsulation, yet commercially available initiators of this class have low water solubility. Here, a water soluble lithium acylphosphinate salt is evaluated for its ability to polymerize diacrylated poly(ethylene glycol) (PEGDA) monomers rapidly into hydrogels, while maintaining high viability during direct encapsulation of cells. Through rheometric measurements, the time to reach gelation of a PEGDA solution with the phosphinate initiator is one tenth the time for that using I2959 at similar concentrations, when exposed to 365 nm light. Further, polymerization with the phosphinate initiator at 405 nm visible light exposure is achieved with low initiator concentrations and light intensities, precluded in polymerizations initiated with I2959 by its absorbance profile. When examined 24h after encapsulation, survival rates of human neonatal fibroblasts encapsulated in hydrogels polymerized with the phosphinate initiator exceed 95%, demonstrating the cytocompatibility of this initiating system.


Advanced Materials | 2009

A Versatile Synthetic Extracellular Matrix Mimic via Thiol‐Norbornene Photopolymerization

Benjamin D. Fairbanks; Michael P. Schwartz; Alexandra E. Halevi; Charles R. Nuttelman; Christopher N. Bowman; Kristi S. Anseth

Step-growth, radically mediated thiol-norbornene photopolymerization is used to create versatile, stimuli-responsive poly(ethylene glycol)-co-peptide hydrogels The reaction is cytocompatible and allows for the encapsulation of human mesenchymal stem cells with a viability greater than 95%. Cellular spreading is dictated via three-dimensional biochemical photopatterning.


Biomaterials | 2009

Characterization of valvular interstitial cell function in three dimensional matrix metalloproteinase degradable PEG hydrogels

Julie A. Benton; Benjamin D. Fairbanks; Kristi S. Anseth

Valvular interstitial cells (VICs) maintain functional heart valve structure and display transient fibroblast and myofibroblast properties. Most cell characterization studies have been performed on plastic dishes; while insightful, these systems are limited. Thus, a matrix metalloproteinase (MMP) degradable poly(ethylene glycol) (PEG) hydrogel system is proposed in this communication as a useful tool for characterizing VIC function in 3D. When encapsulated, VICs attained spread morphology, and proliferated and migrated as shown through real-time cell microscopy. Additionally, fibronectin derived pendant RGD was incorporated into the system to promote integrin binding. As RGD concentration increased from 0 to 2000 microM, VIC process extension and integrin alpha(v)beta(3) binding increased within two days. By day 10, integrin binding was equalized between conditions. VIC morphology and rate of process extension were also increased through decreasing the hydrogel matrix density presented to the cells. VIC differentiation in response to exogenously delivered transforming growth factor-beta1 (TGF-beta1) was also examined within the hydrogel networks. TGF-beta1 increased expression of alpha smooth muscle actin (alphaSMA) and collagen-1 at both the mRNA and protein level by day 2 of culture, indicating myofibroblast differentiation, and was sustained over the course of the study (2 weeks). These studies demonstrate the utility, flexibility, and biological activity of this MMP-degradable system for the characterization of VICs, an important cell population for tissue engineering viable valve replacements and understanding valvular pathobiology.


Macromolecules | 2011

Photodegradable, Photoadaptable Hydrogels via Radical-Mediated Disulfide Fragmentation Reaction

Benjamin D. Fairbanks; Samir P. Singh; Christopher N. Bowman; Kristi S. Anseth

Various techniques have been adopted to impart a biological responsiveness to synthetic hydrogels for the delivery of therapeutic agents as well as the study and manipulation of biological processes and tissue development. Such techniques and materials include polyelectrolyte gels that swell and deswell with changes in pH, thermosensitive gels that contract at physiological temperatures, and peptide cross-linked hydrogels that degrade upon peptidolysis by cell-secreted enzymes. Herein we report a unique approach to photochemically deform and degrade disulfide cross-linked hydrogels, mitigating the challenges of light attenuation and low quantum yield, permitting the degradation of hydrogels up to 2 mm thick within 120 s at low light intensities (10 mW/cm2 at 365 nm). Hydrogels were formed by the oxidation of thiol-functionalized 4-armed poly(ethylene glycol) macromolecules. These disulfide cross-linked hydrogels were then swollen in a lithium acylphosphinate photoinitiator solution. Upon exposure to light, photogenerated radicals initiate multiple fragmentation and disulfide exchange reactions, permitting and promoting photodeformation, photowelding, and photodegradation. This novel, but simple, approach to generate photoadaptable hydrogels portends the study of cellular response to mechanically and topographically dynamic substrates as well as novel encapsulations by the welding of solid substrates. The principles and techniques described herein hold implications for more than hydrogel materials but also for photoadaptable polymers more generally.


Biomacromolecules | 2009

Enzyme-Mediated Redox Initiation for Hydrogel Generation and Cellular Encapsulation

Leah M. Johnson; Benjamin D. Fairbanks; Kristi S. Anseth; Christopher N. Bowman

A rapid, water-soluble enzyme-mediated radical chain initiation system involving glucose oxidase and Fe(2+) generated hydrogels within minutes at 25 degrees C and in ambient oxygen. The initiation components were evaluated for their effect on polymerization rates of hydroxyethyl acrylate-poly(ethylene glycol)(575) diacrylate comonomer solutions using near-infrared spectroscopy. Increasing glucose concentration increased polymerization rates until reaching a rate plateau above 1 x 10(-3) M of glucose. A square root dependence of the initial polymerization rate on Fe(2+) concentration was observed between 1.0 x 10(-4) M and 5.0 x 10(-4) M of Fe(2+), whereupon excess Fe(2+) reduced final acrylate conversions. The glucose oxidase-mediated initiation system was employed for encapsulation of fibroblasts (NIH3T3s) into a poly(ethylene glycol) tetra-acrylate (M(n) approximately 20000) hydrogel scaffold demonstrating 96% (+/-3%) viability at 24 h postencapsulation. This first use of enzyme-mediated redox radical chain initiation for cellular encapsulation demonstrates polymerization of hydrogels in situ with kinetic control, minimal oxygen inhibition issues, and utilization of low initiator concentrations.


Advanced Drug Delivery Reviews | 2015

Biomedical applications of polymers derived by reversible addition – fragmentation chain-transfer (RAFT)

Benjamin D. Fairbanks; Pathiraja A. Gunatillake; Laurence Meagher

RAFT- mediated polymerization, providing control over polymer length and architecture as well as facilitating post polymerization modification of end groups, has been applied to virtually every facet of biomedical materials research. RAFT polymers have seen particularly extensive use in drug delivery research. Facile generation of functional and telechelic polymers permits straightforward conjugation to many therapeutic compounds while synthesis of amphiphilic block copolymers via RAFT allows for the generation of self-assembled structures capable of carrying therapeutic payloads. With the large and growing body of literature employing RAFT polymers as drug delivery aids and vehicles, concern over the potential toxicity of RAFT derived polymers has been raised. While literature exploring this complication is relatively limited, the emerging consensus may be summed up in three parts: toxicity of polymers generated with dithiobenzoate RAFT agents is observed at high concentrations but not with polymers generated with trithiocarbonate RAFT agents; even for polymers generated with dithiobenzoate RAFT agents, most reported applications call for concentrations well below the toxicity threshold; and RAFT end-groups may be easily removed via any of a variety of techniques that leave the polymer with no intrinsic toxicity attributable to the mechanism of polymerization. The low toxicity of RAFT-derived polymers and the ability to remove end groups via straightforward and scalable processes make RAFT technology a valuable tool for practically any application in which a polymer of defined molecular weight and architecture is desired.


BMC Genomics | 2006

A comparison of alternative 60-mer probe designs in an in-situ synthesized oligonucleotide microarray.

Danielle L Leiske; Anis Karimpour-Fard; Patrick S. Hume; Benjamin D. Fairbanks; Ryan T. Gill

BackgroundDNA microarrays have proven powerful for functional genomics studies. Several technologies exist for the generation of whole-genome arrays. It is well documented that 25mer probes directed against different regions of the same gene produce variable signal intensity values. However, the extent to which this is true for probes of greater length (60mers) is not well characterized. Moreover, this information has not previously been reported for whole-genome arrays designed against bacteria, whose genomes may differ substantially in characteristics directly affecting microarray performance.ResultsWe report here an analysis of alternative 60mer probe designs for an in-situ synthesized oligonucleotide array for the GC rich, β-proteobacterium Burkholderia cenocepacia. Probes were designed using the ArrayOligoSel3.5 software package and whole-genome microarrays synthesized by Agilent, Inc. using their in-situ, ink-jet technology platform. We first validated the quality of the microarrays as demonstrated by an average signal to noise ratio of >1000. Next, we determined that the variance of replicate probes (1178 total probes examined) of identical sequence was 3.8% whereas the variance of alternative probes (558 total alternative probes examined) designs was 9.5%. We determined that depending upon the definition, about 2.4% of replicate and 7.8% of alternative probes produced outlier conclusions. Finally, we determined none of the probe design subscores (GC content, internal repeat, binding energy and self annealment) produced by ArrayOligoSel3.5 were predictive or probes that produced outlier signals.ConclusionOur analysis demonstrated that the use of multiple probes per target sequence is not essential for in-situ synthesized 60mer oligonucleotide arrays designed against bacteria. Although probes producing outlier signals were identified, the use of ratios results in less than 10% of such outlier conclusions. We also determined that several different measures commonly utilized in probe design were not predictive of outlier probes.


Angewandte Chemie | 2015

Clickable Nucleic Acids: Sequence‐Controlled Periodic Copolymer/Oligomer Synthesis by Orthogonal Thiol‐X Reactions

Weixian Xi; Sankha Pattanayak; Chen Wang; Benjamin D. Fairbanks; Tao Gong; Justine Wagner; Christopher J. Kloxin; Christopher N. Bowman

Synthetic polymer approaches generally lack the ability to control the primary sequence, with sequence control referred to as the holy grail. Two click chemistry reactions were now combined to form nucleobase-containing sequence-controlled polymers in simple polymerization reactions. Two distinct approaches are used to form these click nucleic acid (CNA) polymers. These approaches employ thiol-ene and thiol-Michael reactions to form homopolymers of a single nucleobase (e.g., poly(A)n ) or homopolymers of specific repeating nucleobase sequences (e.g., poly(ATC)n). Furthermore, the incorporation of monofunctional thiol-terminated polymers into the polymerization system enables the preparation of multiblock copolymers in a single reaction vessel; the length of the diblock copolymer can be tuned by the stoichiometric ratio and/or the monomer functionality. These polymers are also used for organogel formation where complementary CNA-based polymers form reversible crosslinks.


Biomacromolecules | 2014

Inhibition of Protein and Cell Attachment on Materials Generated from N‑(2-Hydroxypropyl) Acrylamide

Benjamin D. Fairbanks; Helmut Thissen; George Maurdev; Paul Pasic; Jacinta F. White; Laurence Meagher

Effective control over biointerfacial interactions is essential for a broad range of biomedical applications. At this point in time, only a relatively small range of radically polymerizable monomers have been described that are able to generate low fouling polymer materials and surfaces. The most important examples that have been successfully used in the context of the reduction of nonspecific protein adsorption and subsequent cell attachment include PEG-based monomers such as poly(ethylene glycol) methacrylate (PEGMA), zwitterionic monomers such as 2-methacryloyloxyethyl phosphorylcholine and noncharged monomers such as acrylamide and N-(2-hydroxypropyl) methacrylamide (HPMAm). However, issues such as oxidative degradation and poor polymerization characteristics limit the applicability of most of these candidates. Here we have synthesized the monomer N-(2-hydroxypropyl) acrylamide (HPAm), examined its polymerization kinetics and evaluated its suitability for RAFT mediated polymerization in comparison to HPMAm. We also synthesized hydrogels using HPMAm and HPAm and evaluated the ability of HPAm polymers to occlude protein adsorption and cell attachment. In RAFT-controlled polymerization, much faster (8×) polymerization was observed for HPAm relative to HPMAm and better control was achieved over the molecular weight distribution. The performance of hydrogels prepared from HPAm in the prevention of protein adsorption and cellular attachment was equivalent to or better than that observed for materials made from HPMAm and PEG. These results open the door for HPAm based polymers in applications where effective control over biointerfacial interactions is required.


Advanced Materials | 2017

Synthesis and Assembly of Click-Nucleic-Acid-Containing PEG–PLGA Nanoparticles for DNA Delivery

Albert Harguindey; Dylan W. Domaille; Benjamin D. Fairbanks; Justine Wagner; Christopher N. Bowman; Jennifer N. Cha

Co-delivery of both chemotherapy drugs and siRNA from a single delivery vehicle can have a significant impact on cancer therapy due to the potential for overcoming issues such as drug resistance. However, the inherent chemical differences between charged nucleic acids and hydrophobic drugs have hindered entrapment of both components within a single carrier. While poly(ethylene glycol)-block-poly(lactic-co-glycolic acid) (PEG-PLGA) copolymers have been used successfully for targeted delivery of chemotherapy drugs, loading of DNA or RNA has been poor. It is demonstrated that significant amounts of DNA can be encapsulated within PLGA-containing nanoparticles through the use of a new synthetic DNA analog, click nucleic acids (CNAs). First, triblock copolymers of PEG-CNA-PLGA are synthesized and then formulated into polymer nanoparticles from oil-in-water emulsions. The CNA-containing particles show high encapsulation of DNA complementary to the CNA sequence, whereas PEG-PLGA alone shows minimal DNA loading, and non-complementary DNA strands do not get encapsulated within the PEG-CNA-PLGA nanoparticles. Furthermore, the dye pyrene can be successfully co-loaded with DNA and lastly, a complex, larger DNA sequence that contains an overhang complementary to the CNA can also be encapsulated, demonstrating the potential utility of the CNA-containing particles as carriers for chemotherapy agents and gene silencers.

Collaboration


Dive into the Benjamin D. Fairbanks's collaboration.

Top Co-Authors

Avatar

Christopher N. Bowman

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Kristi S. Anseth

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Justine Wagner

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Jennifer N. Cha

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Michael P. Schwartz

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Chen Wang

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dylan W. Domaille

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Sankha Pattanayak

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Weixian Xi

University of Colorado Boulder

View shared research outputs
Researchain Logo
Decentralizing Knowledge