Benjamin D. Pope
Florida State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Benjamin D. Pope.
Nature | 2014
Benjamin D. Pope; Tyrone Ryba; Vishnu Dileep; Feng Yue; Weisheng Wu; Olgert Denas; Daniel L. Vera; Yanli Wang; R. Scott Hansen; Theresa K. Canfield; Robert E. Thurman; Yong Cheng; Günhan Gülsoy; Jonathan H. Dennis; Michael Snyder; John A. Stamatoyannopoulos; James Taylor; Ross C. Hardison; Tamer Kahveci; Bing Ren; David M. Gilbert
Eukaryotic chromosomes replicate in a temporal order known as the replication-timing program. In mammals, replication timing is cell-type-specific with at least half the genome switching replication timing during development, primarily in units of 400–800 kilobases (‘replication domains’), whose positions are preserved in different cell types, conserved between species, and appear to confine long-range effects of chromosome rearrangements. Early and late replication correlate, respectively, with open and closed three-dimensional chromatin compartments identified by high-resolution chromosome conformation capture (Hi-C), and, to a lesser extent, late replication correlates with lamina-associated domains (LADs). Recent Hi-C mapping has unveiled substructure within chromatin compartments called topologically associating domains (TADs) that are largely conserved in their positions between cell types and are similar in size to replication domains. However, TADs can be further sub-stratified into smaller domains, challenging the significance of structures at any particular scale. Moreover, attempts to reconcile TADs and LADs to replication-timing data have not revealed a common, underlying domain structure. Here we localize boundaries of replication domains to the early-replicating border of replication-timing transitions and map their positions in 18 human and 13 mouse cell types. We demonstrate that, collectively, replication domain boundaries share a near one-to-one correlation with TAD boundaries, whereas within a cell type, adjacent TADs that replicate at similar times obscure replication domain boundaries, largely accounting for the previously reported lack of alignment. Moreover, cell-type-specific replication timing of TADs partitions the genome into two large-scale sub-nuclear compartments revealing that replication-timing transitions are indistinguishable from late-replicating regions in chromatin composition and lamina association and accounting for the reduced correlation of replication timing to LADs and heterochromatin. Our results reconcile cell-type-specific sub-nuclear compartmentalization and replication timing with developmentally stable structural domains and offer a unified model for large-scale chromosome structure and function.
Molecular Cell | 2012
Tamir Chandra; Kristina Kirschner; Jean Yves Thuret; Benjamin D. Pope; Tyrone Ryba; Scott Newman; Kashif Ahmed; Shamith Samarajiwa; Rafik Salama; Thomas Carroll; Rory Stark; Rekin’s Janky; Masako Narita; Lixiang Xue; Agustin Chicas; Sabrina Nũnez; Ralf Janknecht; Yoko Hayashi-Takanaka; Michael D. Wilson; Aileen Marshall; Duncan T. Odom; M. Madan Babu; David P. Bazett-Jones; Simon Tavaré; Paul A.W. Edwards; Scott W. Lowe; Hiroshi Kimura; David M. Gilbert; Masashi Narita
The expansion of repressive epigenetic marks has been implicated in heterochromatin formation during embryonic development, but the general applicability of this mechanism is unclear. Here we show that nuclear rearrangement of repressive histone marks H3K9me3 and H3K27me3 into nonoverlapping structural layers characterizes senescence-associated heterochromatic foci (SAHF) formation in human fibroblasts. However, the global landscape of these repressive marks remains unchanged upon SAHF formation, suggesting that in somatic cells, heterochromatin can be formed through the spatial repositioning of pre-existing repressively marked histones. This model is reinforced by the correlation of presenescent replication timing with both the subsequent layered structure of SAHFs and the global landscape of the repressive marks, allowing us to integrate microscopic and genomic information. Furthermore, modulation of SAHF structure does not affect the occupancy of these repressive marks, nor vice versa. These experiments reveal that high-order heterochromatin formation and epigenetic remodeling of the genome can be discrete events.
Cold Spring Harbor Symposia on Quantitative Biology | 2010
David M. Gilbert; Shin-ichiro Takebayashi; Tyrone Ryba; Junjie Lu; Benjamin D. Pope; Korey A. Wilson; Ichiro Hiratani
All eukaryotic cells replicate segments of their genomes in a defined temporal sequence. In multicellular organisms, at least half of the genome is subject to changes in this temporal sequence during development. We now know that this temporal sequence and its developmentally regulated changes are conserved across distantly related species, suggesting that it either represents or reflects something biologically important. However, both the mechanism and the significance of this program remain unknown. We recently demonstrated a remarkably strong genome-wide correlation between replication timing and chromatin interaction maps, stronger than any other chromosomal property analyzed to date, indicating that sequences localized close to one another replicate at similar times. This provides molecular confirmation of long-standing cytogenetic evidence for spatial compartmentalization of early- and late-replicating DNA and supports our earlier model that replication timing is reestablished in each G(1) phase, coincident with the anchorage of chromosomal segments at specific locations within the nucleus (timing decision point [TDP]). Here, we review the evidence linking the replication program to the three-dimensional architecture of chromatin in the nucleus and discuss what such a link might mean for the mechanism and significance of a developmentally regulated replication program.
Nature Protocols | 2011
Tyrone Ryba; Dana Battaglia; Benjamin D. Pope; Ichiro Hiratani; David M. Gilbert
Replication timing profiles are cell type–specific and reflect genome organization changes during differentiation. In this protocol, we describe how to analyze genome-wide replication timing (RT) in mammalian cells. Asynchronously cycling cells are pulse labeled with the nucleotide analog 5-bromo-2-deoxyuridine (BrdU) and sorted into S-phase fractions on the basis of DNA content using flow cytometry. BrdU-labeled DNA from each fraction is immunoprecipitated, amplified, differentially labeled and co-hybridized to a whole-genome comparative genomic hybridization microarray, which is currently more cost effective than high-throughput sequencing and equally capable of resolving features at the biologically relevant level of tens to hundreds of kilobases. We also present a guide to analyzing the resulting data sets based on methods we use routinely. Subjects include normalization, scaling and data quality measures, LOESS (local polynomial) smoothing of RT values, segmentation of data into domains and assignment of timing values to gene promoters. Finally, we cover clustering methods and means to relate changes in the replication program to gene expression and other genetic and epigenetic data sets. Some experience with R or similar programming languages is assumed. All together, the protocol takes ∼3 weeks per batch of samples.
Genome Research | 2012
Tyrone Ryba; Dana Battaglia; Bill H. Chang; James W. Shirley; Quinton Buckley; Benjamin D. Pope; Meenakshi Devidas; Brian J. Druker; David M. Gilbert
Abnormal replication timing has been observed in cancer but no study has comprehensively evaluated this misregulation. We generated genome-wide replication-timing profiles for pediatric leukemias from 17 patients and three cell lines, as well as normal B and T cells. Nonleukemic EBV-transformed lymphoblastoid cell lines displayed highly stable replication-timing profiles that were more similar to normal T cells than to leukemias. Leukemias were more similar to each other than to B and T cells but were considerably more heterogeneous than nonleukemic controls. Some differences were patient specific, while others were found in all leukemic samples, potentially representing early epigenetic events. Differences encompassed large segments of chromosomes and included genes implicated in other types of cancer. Remarkably, differences that distinguished leukemias aligned in register to the boundaries of developmentally regulated replication-timing domains that distinguish normal cell types. Most changes did not coincide with copy-number variation or translocations. However, many of the changes that were associated with translocations in some leukemias were also shared between all leukemic samples independent of the genetic lesion, suggesting that they precede and possibly predispose chromosomes to the translocation. Altogether, our results identify sites of abnormal developmental control of DNA replication in cancer that reveal the significance of replication-timing boundaries to chromosome structure and function and support the replication domain model of replication-timing regulation. They also open new avenues of investigation into the chromosomal basis of cancer and provide a potential novel source of epigenetic cancer biomarkers.
Human Molecular Genetics | 2012
Benjamin D. Pope; Tamir Chandra; Quinton Buckley; Matthew Hoare; Tyrone Ryba; Frances K. Wiseman; Anna Kuta; Michael D. Wilson; Duncan T. Odom; David M. Gilbert
In multicellular organisms, developmental changes to replication timing occur in 400-800 kb domains across half the genome. While examples of epigenetic control of replication timing have been described, a role for DNA sequence in mammalian replication-timing regulation has not been substantiated. To assess the role of DNA sequences in directing developmental changes to replication timing, we profiled replication timing in mice carrying a genetically rearranged Human Chromosome 21 (Hsa21). In two distinct mouse cell types, Hsa21 sequences maintained human-specific replication timing, except at points of Hsa21 rearrangement. Changes in replication timing at rearrangements extended up to 900 kb and consistently reconciled with the wild-type replication pattern at developmental boundaries of replication-timing domains. Our results are consistent with DNA sequence-driven regulation of Hsa21 replication timing during development and provide evidence that mammalian chromosomes consist of multiple independent units of replication-timing regulation.
PLOS ONE | 2011
Benjamin D. Pope; Koji Tsumagari; Dana Battaglia; Tyrone Ryba; Ichiro Hiratani; Melanie Ehrlich; David M. Gilbert
Facioscapulohumeral muscular dystrophy (FSHD) is linked to contraction of an array of tandem 3.3-kb repeats (D4Z4) at 4q35.2 from 11-100 copies to 1-10 copies. The extent to which D4Z4 contraction at 4q35.2 affects overall 4q35.2 chromatin organization remains unclear. Because DNA replication timing is highly predictive of long-range chromatin interactions, we generated genome-wide replication-timing profiles for FSHD and control myogenic precursor cells. We compared non-immortalized myoblasts from four FSHD patients and three control individuals to each other and to a variety of other human cell types. This study also represents the first genome-wide comparison of replication timing profiles in non-immortalized human cell cultures. Myoblasts from both control and FSHD individuals all shared a myoblast-specific replication profile. In contrast, male and female individuals were readily distinguished by monoallelic differences in replication timing at DXZ4 and other regions across the X chromosome affected by X inactivation. We conclude that replication timing is a robust cell-type specific feature that is unaffected by FSHD-related D4Z4 contraction.
BioEssays | 2015
Molly R. Gordon; Benjamin D. Pope; Jiao Sima; David M. Gilbert
It is now well accepted that defined architectural compartments within the cell nucleus can regulate the transcriptional activity of chromosomal domains within their vicinity. However, it is generally unclear how these compartments are formed. The nuclear periphery has received a great deal of attention as a repressive compartment that is implicated in many cellular functions during development and disease. The inner nuclear membrane, the nuclear lamina, and associated proteins compose the nuclear periphery and together they interact with proximal chromatin creating a repressive environment. A new study by Harr et al. identifies specific protein–DNA interactions and epigenetic states necessary to re‐position chromatin to the nuclear periphery in a cell‐type specific manner. Here, we review concepts in gene positioning within the nucleus and current accepted models of dynamic gene repositioning within the nucleus during differentiation. This study highlights that myriad pathways lead to nuclear organization.
Nature | 2014
Benjamin D. Pope; David M. Gilbert
A comparison of identical human twins, only one of whom has Downs syndrome, reveals a genome-wide flattening of gene-expression levels in the affected individual. See Article p.345 Downs syndrome is thought to be caused by gene expression disturbances, so to understand the molecular mechanisms that underlie the phenotype requires an understanding of the transcriptome differences in cells and tissues carrying the total or partial trisomy of chromosome 21 that is typical of the condition. This study of the transcriptome of fetal cells of monozygotic twins discordant for trisomy 21 shows that differential expression between the twins is organized in domains along all chromosomes. These gene expression dysregulation domains are conserved in the mouse model of Downs syndrome and correlate with the lamina-associated domains and replication domains. Although the overall genome topology is not altered in trisomic cells, the authors report modifications of the chromatin environment influencing the overall transcriptome and suggest that the dysregulation domains they identify may therefore contribute to some Downs syndrome phenotypes.
Chromosome Research | 2010
Benjamin D. Pope; Ichiro Hiratani; David M. Gilbert