Tamir Chandra
Babraham Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tamir Chandra.
Molecular Cell | 2012
Tamir Chandra; Kristina Kirschner; Jean Yves Thuret; Benjamin D. Pope; Tyrone Ryba; Scott Newman; Kashif Ahmed; Shamith Samarajiwa; Rafik Salama; Thomas Carroll; Rory Stark; Rekin’s Janky; Masako Narita; Lixiang Xue; Agustin Chicas; Sabrina Nũnez; Ralf Janknecht; Yoko Hayashi-Takanaka; Michael D. Wilson; Aileen Marshall; Duncan T. Odom; M. Madan Babu; David P. Bazett-Jones; Simon Tavaré; Paul A.W. Edwards; Scott W. Lowe; Hiroshi Kimura; David M. Gilbert; Masashi Narita
The expansion of repressive epigenetic marks has been implicated in heterochromatin formation during embryonic development, but the general applicability of this mechanism is unclear. Here we show that nuclear rearrangement of repressive histone marks H3K9me3 and H3K27me3 into nonoverlapping structural layers characterizes senescence-associated heterochromatic foci (SAHF) formation in human fibroblasts. However, the global landscape of these repressive marks remains unchanged upon SAHF formation, suggesting that in somatic cells, heterochromatin can be formed through the spatial repositioning of pre-existing repressively marked histones. This model is reinforced by the correlation of presenescent replication timing with both the subsequent layered structure of SAHFs and the global landscape of the repressive marks, allowing us to integrate microscopic and genomic information. Furthermore, modulation of SAHF structure does not affect the occupancy of these repressive marks, nor vice versa. These experiments reveal that high-order heterochromatin formation and epigenetic remodeling of the genome can be discrete events.
Nature Methods | 2017
Vladimir Yu. Kiselev; Kristina Kirschner; Michael T. Schaub; Tallulah S. Andrews; Andrew Yiu; Tamir Chandra; Kedar Nath Natarajan; Wolf Reik; Mauricio Barahona; Anthony R. Green; Martin Hemberg
Single-cell RNA-seq enables the quantitative characterization of cell types based on global transcriptome profiles. We present single-cell consensus clustering (SC3), a user-friendly tool for unsupervised clustering, which achieves high accuracy and robustness by combining multiple clustering solutions through a consensus approach (http://bioconductor.org/packages/SC3). We demonstrate that SC3 is capable of identifying subclones from the transcriptomes of neoplastic cells collected from patients.
Genes & Development | 2013
Mahito Sadaie; Rafik Salama; T. Carroll; Kosuke Tomimatsu; Tamir Chandra; Andrew J. Young; Masashi Narita; Pedro A. Pérez-Mancera; Dorothy C. Bennett; Heung Chong; Hiroshi Kimura
Senescence is a stress-responsive form of stable cell cycle exit. Senescent cells have a distinct gene expression profile, which is often accompanied by the spatial redistribution of heterochromatin into senescence-associated heterochromatic foci (SAHFs). Studying a key component of the nuclear lamina lamin B1 (LMNB1), we report dynamic alterations in its genomic profile and their implications for SAHF formation and gene regulation during senescence. Genome-wide mapping reveals that LMNB1 is depleted during senescence, preferentially from the central regions of lamina-associated domains (LADs), which are enriched for Lys9 trimethylation on histone H3 (H3K9me3). LMNB1 knockdown facilitates the spatial relocalization of perinuclear H3K9me3-positive heterochromatin, thus promoting SAHF formation, which could be inhibited by ectopic LMNB1 expression. Furthermore, despite the global reduction in LMNB1 protein levels, LMNB1 binding increases during senescence in a small subset of gene-rich regions where H3K27me3 also increases and gene expression becomes repressed. These results suggest that LMNB1 may contribute to senescence in at least two ways due to its uneven genome-wide redistribution: first, through the spatial reorganization of chromatin and, second, through gene repression.
Nature | 2017
Karen J. Mackenzie; Paula Carroll; Carol-Anne Martin; Olga Murina; Adeline Fluteau; Daniel J Simpson; Nelly Olova; Hannah Sutcliffe; Jacqueline K. Rainger; Andrea Leitch; Ruby T. Osborn; Ann P. Wheeler; Marcin Nowotny; Nick Gilbert; Tamir Chandra; Martin A. M. Reijns; Andrew P. Jackson
DNA is strictly compartmentalized within the nucleus to prevent autoimmunity; despite this, cyclic GMP–AMP synthase (cGAS), a cytosolic sensor of double-stranded DNA, is activated in autoinflammatory disorders and by DNA damage. Precisely how cellular DNA gains access to the cytoplasm remains to be determined. Here, we report that cGAS localizes to micronuclei arising from genome instability in a mouse model of monogenic autoinflammation, after exogenous DNA damage and spontaneously in human cancer cells. Such micronuclei occur after mis-segregation of DNA during cell division and consist of chromatin surrounded by its own nuclear membrane. Breakdown of the micronuclear envelope, a process associated with chromothripsis, leads to rapid accumulation of cGAS, providing a mechanism by which self-DNA becomes exposed to the cytosol. cGAS is activated by chromatin, and consistent with a mitotic origin, micronuclei formation and the proinflammatory response following DNA damage are cell-cycle dependent. By combining live-cell laser microdissection with single cell transcriptomics, we establish that interferon-stimulated gene expression is induced in micronucleated cells. We therefore conclude that micronuclei represent an important source of immunostimulatory DNA. As micronuclei formed from lagging chromosomes also activate this pathway, recognition of micronuclei by cGAS may act as a cell-intrinsic immune surveillance mechanism that detects a range of neoplasia-inducing processes.
Cell Reports | 2015
Tamir Chandra; Philip Ewels; Stefan Schoenfelder; Mayra Furlan-Magaril; Steven W. Wingett; Kristina Kirschner; Jean-Yves Thuret; Simon Andrews; Peter Fraser; Wolf Reik
Summary Cellular senescence has been implicated in tumor suppression, development, and aging and is accompanied by large-scale chromatin rearrangements, forming senescence-associated heterochromatic foci (SAHF). However, how the chromatin is reorganized during SAHF formation is poorly understood. Furthermore, heterochromatin formation in senescence appears to contrast with loss of heterochromatin in Hutchinson-Gilford progeria. We mapped architectural changes in genome organization in cellular senescence using Hi-C. Unexpectedly, we find a dramatic sequence- and lamin-dependent loss of local interactions in heterochromatin. This change in local connectivity resolves the paradox of opposing chromatin changes in senescence and progeria. In addition, we observe a senescence-specific spatial clustering of heterochromatic regions, suggesting a unique second step required for SAHF formation. Comparison of embryonic stem cells (ESCs), somatic cells, and senescent cells shows a unidirectional loss in local chromatin connectivity, suggesting that senescence is an endpoint of the continuous nuclear remodelling process during differentiation.
Nucleic Acids Research | 2017
Peter Stepper; Goran Kungulovski; Renata Z. Jurkowska; Tamir Chandra; Felix Krueger; Richard Reinhardt; Wolf Reik; Albert Jeltsch; Tomasz P. Jurkowski
Abstract DNA methylation plays a critical role in the regulation and maintenance of cell-type specific transcriptional programs. Targeted epigenome editing is an emerging technology to specifically regulate cellular gene expression in order to modulate cell phenotypes or dissect the epigenetic mechanisms involved in their control. In this work, we employed a DNA methyltransferase Dnmt3a–Dnmt3L construct fused to the nuclease-inactivated dCas9 programmable targeting domain to introduce DNA methylation into the human genome specifically at the EpCAM, CXCR4 and TFRC gene promoters. We show that targeting of these loci with single gRNAs leads to efficient and widespread methylation of the promoters. Multiplexing of several guide RNAs does not increase the efficiency of methylation. Peaks of targeted methylation were observed around 25 bp upstream and 40 bp downstream of the PAM site, while 20–30 bp of the binding site itself are protected against methylation. Potent methylation is dependent on the multimerization of Dnmt3a/Dnmt3L complexes on the DNA. Furthermore, the introduced methylation causes transcriptional repression of the targeted genes. These new programmable epigenetic editors allow unprecedented control of the DNA methylation status in cells and will lead to further advances in the understanding of epigenetic signaling.
BioTechniques | 2012
Paul Coupland; Tamir Chandra; Michael A. Quail; Wolf Reik; Harold Swerdlow
We have developed a sequencing method on the Pacific Biosciences RS sequencer (the PacBio) for small DNA molecules that avoids the need for a standard library preparation. To date this approach has been applied toward sequencing single-stranded and double-stranded viral genomes, bacterial plasmids, plasmid vector models for DNA-modification analysis, and linear DNA fragments covering an entire bacterial genome. Using direct sequencing it is possible to generate sequence data from as little as 1 ng of DNA, offering a significant advantage over current protocols which typically require 400-500 ng of sheared DNA for the library preparation.
Nucleus | 2013
Tamir Chandra; Masashi Narita
It is almost ten years since senescence associated heterochromatic foci (SAHFs) were first described in human diploid fibroblasts (HDFs). Since then, a number of factors have been identified that affect SAHF formation, including HMGA proteins, structural components of SAHFs. However, the involvement of epigenetic marks in SAHF formation remains unclear. Our recent study, combining microscopy and ChIP-seq approaches, revealed that SAHFs are formed through spatial repositioning of the genome. This occurs according to certain chromatin features that are correlated with, but do not require, the repressive marks histone H3 trimethylated on lysine 9 (H3K9me3) and H3K27me3. These repressive marks are segregated from each other within SAHFs, forming layered high-order chromatin structures (HOCS). During the dynamic change in HOCS as SAHFs form, the linear epigenomic profiles of these repressive marks are highly static. This is in marked contrast to the spreading of repressive marks occurring during embryonic cell differentiation. Thus the layered HOCS of SAHFs is likely achieved mainly through the spatial rearrangement of pre-existing heterochromatin, rather than spreading of heterochromatin. Evidence for the co-association of similar types of chromatin is emerging and SAHFs may provide a unique model system to study the correlation between HOCS and chromatin types, which are readily visible and regulable.
Human Molecular Genetics | 2012
Benjamin D. Pope; Tamir Chandra; Quinton Buckley; Matthew Hoare; Tyrone Ryba; Frances K. Wiseman; Anna Kuta; Michael D. Wilson; Duncan T. Odom; David M. Gilbert
In multicellular organisms, developmental changes to replication timing occur in 400-800 kb domains across half the genome. While examples of epigenetic control of replication timing have been described, a role for DNA sequence in mammalian replication-timing regulation has not been substantiated. To assess the role of DNA sequences in directing developmental changes to replication timing, we profiled replication timing in mice carrying a genetically rearranged Human Chromosome 21 (Hsa21). In two distinct mouse cell types, Hsa21 sequences maintained human-specific replication timing, except at points of Hsa21 rearrangement. Changes in replication timing at rearrangements extended up to 900 kb and consistently reconciled with the wild-type replication pattern at developmental boundaries of replication-timing domains. Our results are consistent with DNA sequence-driven regulation of Hsa21 replication timing during development and provide evidence that mammalian chromosomes consist of multiple independent units of replication-timing regulation.
Cell Reports | 2017
Hisham Mohammed; Irene Hernando-Herraez; Aurora Savino; Antonio Scialdone; Iain C. Macaulay; Carla Mulas; Tamir Chandra; Thierry Voet; Wendy Dean; Jennifer Nichols; John C. Marioni; Wolf Reik
Summary The mouse inner cell mass (ICM) segregates into the epiblast and primitive endoderm (PrE) lineages coincident with implantation of the embryo. The epiblast subsequently undergoes considerable expansion of cell numbers prior to gastrulation. To investigate underlying regulatory principles, we performed systematic single-cell RNA sequencing (seq) of conceptuses from E3.5 to E6.5. The epiblast shows reactivation and subsequent inactivation of the X chromosome, with Zfp57 expression associated with reactivation and inactivation together with other candidate regulators. At E6.5, the transition from epiblast to primitive streak is linked with decreased expression of polycomb subunits, suggesting a key regulatory role. Notably, our analyses suggest elevated transcriptional noise at E3.5 and within the non-committed epiblast at E6.5, coinciding with exit from pluripotency. By contrast, E6.5 primitive streak cells became highly synchronized and exhibit a shortened G1 cell-cycle phase, consistent with accelerated proliferation. Our study systematically charts transcriptional noise and uncovers molecular processes associated with early lineage decisions.