Benjamin H. Singer
University of Michigan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Benjamin H. Singer.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Benjamin H. Singer; Amy E. Gamelli; Cynthia L. Fuller; Stephanie J. Temme; Jack M. Parent; Geoffrey G. Murphy
It is now well established that neurogenesis in the rodent subgranular zone of the hippocampal dentate gyrus continues throughout adulthood. Neuroblasts born in the dentate subgranular zone migrate into the granule cell layer, where they differentiate into neurons known as dentate granule cells. Suppression of neurogenesis by irradiation or genetic ablation has been shown to disrupt synaptic plasticity in the dentate gyrus and impair some forms of hippocampus-dependent learning and memory. Using a recently developed transgenic mouse model for suppressing neurogenesis, we sought to determine the long-term impact of ablating neurogenesis on synaptic plasticity in young-adult mice. Consistent with previous reports, we found that ablation of neurogenesis resulted in significant deficits in dentate gyrus long-term potentiation (LTP) when examined at a time proximal to the ablation. However, the observed deficits in LTP were not permanent. LTP in the dentate gyrus was restored within 6 wk and this recovery occurred in the complete absence of neurogenesis. The recovery in LTP was accompanied by prominent changes within the dentate gyrus, including an increase in the survival rate of newborn cells that were proliferating just before the ablation and a reduction in inhibitory input to the granule cells of the dentate gyrus. These findings suggest that prolonged suppression of neurogenesis in young-adult mice results in wide-ranging compensatory changes in the structure and dynamics of the dentate gyrus that function to restore plasticity.
Bellman Prize in Mathematical Biosciences | 2002
Brian M. Murphy; Benjamin H. Singer; Shoana Anderson; Denise E. Kirschner
There is wide variation in endemic tuberculosis (TB) levels between countries and we seek to identify possible causes of these differences. In this study we present an epidemiological model of Mycobacterium tuberculosis infection to investigate the effects of host genetics and demographic factors on epidemic TB. We discuss the general framework for this approach and present analytical results to identify important parameters affecting steady-state prevalence and incidence rates of TB disease. We then use numerical simulations of our model to observe the effects of a genetically susceptible subpopulation on TB disease dynamics at the population level. Finally, we simulate infection within a genetically heterogeneous population in two demographic settings: India (a typical population with high TB prevalence) and the USA (a typical population with low TB prevalence). Results show that changes in transmission parameters, the fraction of the population genetically susceptible to infection, and demographic factors strongly affect TB prevalence and incidence rates.
The Journal of Comparative Neurology | 2009
Benjamin H. Singer; Emily M. Jutkiewicz; Cynthia L. Fuller; Robin J. Lichtenwalner; Helen Zhang; Alan J. Velander; Xiangquan Li; Margaret E. Gnegy; Charles F. Burant; Jack M. Parent
Forebrain neurogenesis persists throughout life in the rodent subventricular zone (SVZ) and hippocampal dentate gyrus (DG). Several strategies have been employed to eliminate adult neurogenesis and thereby determine whether depleting adult‐born neurons disrupts specific brain functions, but some approaches do not specifically target neural progenitors. We have developed a transgenic mouse line to reversibly ablate adult neural stem cells and suppress neurogenesis. The nestin‐tk mouse expresses herpes simplex virus thymidine kinase (tk) under the control of the nestin 2nd intronic enhancer, which drives expression in neural progenitors. Administration of ganciclovir (GCV) kills actively dividing cells expressing this transgene. We found that peripheral GCV administration suppressed SVZ‐olfactory bulb and DG neurogenesis within 2 weeks but caused systemic toxicity. Intracerebroventricular GCV infusion for 28 days nearly completely depleted proliferating cells and immature neurons in both the SVZ and DG without systemic toxicity. Reversibility of the effects after prolonged GCV infusion was slow and partial. Neurogenesis did not recover 2 weeks after cessation of GCV administration, but showed limited recovery 6 weeks after GCV that differed between the SVZ and DG. Suppression of neurogenesis did not inhibit antidepressant responsiveness of mice in the tail suspension test. These findings indicate that SVZ and DG neural stem cells differ in their capacity for repopulation, and that adult‐born neurons are not required for antidepressant responses in a common behavioral test of antidepressant efficacy. The nestin‐tk mouse should be useful for studying how reversible depletion of adult neurogenesis influences neurophysiology, other behaviors, and neural progenitor dynamics. J. Comp. Neurol. 514:567–582, 2009.
Nature microbiology | 2016
Robert P. Dickson; Benjamin H. Singer; Michael W. Newstead; Nicole R. Falkowski; John R. Erb-Downward; Theodore J. Standiford; Gary B. Huffnagle
Sepsis and the acute respiratory distress syndrome (ARDS) are major causes of mortality without targeted therapies. Although many experimental and clinical observations have implicated gut microbiota in the pathogenesis of these diseases, culture-based studies have failed to demonstrate translocation of bacteria to the lungs in critically ill patients. Here, we report culture-independent evidence that the lung microbiome is enriched with gut bacteria both in a murine model of sepsis and in humans with established ARDS. Following experimental sepsis, lung communities were dominated by viable gut-associated bacteria. Ecological analysis identified the lower gastrointestinal tract, rather than the upper respiratory tract, as the likely source community of post-sepsis lung bacteria. In bronchoalveolar lavage fluid from humans with ARDS, gut-specific bacteria (Bacteroides spp.) were common and abundant, undetected by culture and correlated with the intensity of systemic inflammation. Alveolar TNF-α, a key mediator of alveolar inflammation in ARDS, was significantly correlated with altered lung microbiota. Our results demonstrate that the lung microbiome is enriched with gut-associated bacteria in sepsis and ARDS, potentially representing a shared mechanism of pathogenesis in these common and lethal diseases.
Journal of Theoretical Biology | 2003
Brian M. Murphy; Benjamin H. Singer; Denise E. Kirschner
Global eradication of tuberculosis (TB) is an international agenda. Thus understanding effects of treatment of TB in different settings is crucial. In previous work, we introduced the framework for a mathematical model of epidemic TB in demographically distinct, heterogeneous populations. Simulations showed the importance of genetic susceptibility in determining endemic prevalence levels. In the work presented here, we include treatment and investigate different strategies for treatment of latent and active TB disease in heterogeneous populations. We illustrate how the presence of a genetically susceptible subpopulation dramatically alters effects of treatment in the same way a core population does in the setting of sexually transmitted diseases. In addition, we evaluate treatment strategies that focus specifically on this subpopulation, and our results indicate that genetically susceptible subpopulations should be accounted for when designing treatment strategies to achieve the greatest reduction in disease prevalence.
PLOS ONE | 2013
Joshua M. Plotnik; Jennifer J. Pokorny; Titiporn Keratimanochaya; Christine E. Webb; Hana F. Beronja; Alice Hennessy; James O. Hill; Virginia J. Hill; Rebecca Kiss; Beckett L. Melville; Violet M. B. Morrison; Dannah Seecoomar; Benjamin H. Singer; Jehona Ukehaxhaj; Sophia K. Vlahakis; Dora Ylli; Nicola S. Clayton; John P. Roberts; Emilie L. Fure; Alicia P. Duchatelier; David Getz
Recent research suggests that domesticated species – due to artificial selection by humans for specific, preferred behavioral traits – are better than wild animals at responding to visual cues given by humans about the location of hidden food. \Although this seems to be supported by studies on a range of domesticated (including dogs, goats and horses) and wild (including wolves and chimpanzees) animals, there is also evidence that exposure to humans positively influences the ability of both wild and domesticated animals to follow these same cues. Here, we test the performance of Asian elephants (Elephas maximus) on an object choice task that provides them with visual-only cues given by humans about the location of hidden food. Captive elephants are interesting candidates for investigating how both domestication and human exposure may impact cue-following as they represent a non-domesticated species with almost constant human interaction. As a group, the elephants (n = 7) in our study were unable to follow pointing, body orientation or a combination of both as honest signals of food location. They were, however, able to follow vocal commands with which they were already familiar in a novel context, suggesting the elephants are able to follow cues if they are sufficiently salient. Although the elephants’ inability to follow the visual cues provides partial support for the domestication hypothesis, an alternative explanation is that elephants may rely more heavily on other sensory modalities, specifically olfaction and audition. Further research will be needed to rule out this alternative explanation.
PLOS Biology | 2010
Guo-Jen Huang; Adrian L. Smith; Daniel H.D. Gray; Cormac Cosgrove; Benjamin H. Singer; Andrew Edwards; S. A. Sim; Jack M. Parent; Alyssa Johnsen; Richard Mott; Diane Mathis; Paul Klenerman; Christophe Benoist; Jonathan Flint
A large correlation between variation in T cell subsets and hippocampal neurogenesis suggests that the immune system has an unexpectedly large influence on the brain.
PLOS ONE | 2016
Benjamin H. Singer; Michael W. Newstead; Christopher L. Cooke; Robert C. Thompson; Kanakadurga Singer; Ramya Ghantasala; Jack M. Parent; Geoffrey G. Murphy; Theodore J. Iwashyna; Theodore J. Standiford
Survivors of sepsis often experience long-term cognitive and functional decline. Previous studies utilizing lipopolysaccharide injection and cecal ligation and puncture in rodent models of sepsis have demonstrated changes in depressive-like behavior and learning and memory after sepsis, as well as evidence of myeloid inflammation and cytokine expression in the brain, but the long-term course of neuroinflammation after sepsis remains unclear. Here, we utilize cecal ligation and puncture with greater than 80% survival as a model of sepsis. We found that sepsis survivor mice demonstrate deficits in extinction of conditioned fear, but no acquisition of fear conditioning, nearly two months after sepsis. These cognitive changes occur in the absence of neuronal loss or changes in synaptic density in the hippocampus. Sepsis also resulted in infiltration of monocytes and neutrophils into the CNS at least two weeks after sepsis in a CCR2 independent manner. Cellular inflammation is accompanied by long-term expression of pro-inflammatory cytokine and chemokine genes, including TNFα and CCR2 ligands, in whole brain homogenates. Gene expression analysis of microglia revealed that while microglia do express anti-microbial genes and damage-associated molecular pattern molecules of the S100A family of genes at least 2 weeks after sepsis, they do not express the cytokines observed in whole brain homogenates. Our results indicate that in a naturalistic model of infection, sepsis results in long-term neuroinflammation, and that this sustained inflammation is likely due to interactions among multiple cell types, including resident microglia and peripherally derived myeloid cells.
European Journal of Neuroscience | 2007
Benjamin H. Singer; Soyoun Kim; Michal Zochowski
We used paired‐pulse odorant stimulation, with a conditioning stimulus delivered either ipsilateral or contralateral to a test stimulus, to unmask the effects of centrifugal feedback on olfactory bulb responses. In reptiles and mammals there are no direct connections between the paired olfactory bulbs, and thus all information transfer between the olfactory bulbs depends on feedback from retrobulbar structures. We measured odor‐induced activity in the turtle olfactory bulb using a voltage‐sensitive dye and a 464‐element photodiode array, which allowed us to monitor the spatial variation in activation of the olfactory bulb. We found that both contralateral and ipsilateral conditioning stimuli evoked long‐lasting inhibition of olfactory bulb activation. In contrast to previous studies using local field potential recording to monitor activity at a single site, we found that this inhibition increased contrast in the spatial patterning of activation over the dorsal surface of the olfactory bulb. Inhibition was also increased when different odorants were used as conditioning and test stimuli, suggesting a role for centrifugal feedback in olfactory discrimination. These results highlight the functional importance of centrifugal feedback and information processing in a broadly distributed olfactory network.
Neural Computation | 2006
Soyoun Kim; Benjamin H. Singer; Michal Zochowski
It has been hypothesized that the brain uses combinatorial as well as temporal coding strategies to represent stimulus properties. The mechanisms and properties of the temporal coding remain undetermined, although it has been postulated that oscillations can mediate formation of this type of code. Here we use a generic model of the vertebrate olfactory bulb to explore the possible role of oscillatory behavior in temporal coding. We show that three mechanisms—synaptic inhibition, slow self-inhibition and input properties—mediate formation of a temporal sequence of simultaneous activations of glomerular modules associated with specific odorants within the oscillatory response. The sequence formed depends on the relative properties of odorant features and thus may mediate discrimination of odorants activating overlapping sets of glomeruli. We suggest that period-doubling transitions may be driven through excitatory feedback from a portion of the olfactory network acting as a coincidence modulator. Furthermore, we hypothesize that the period-doubling transition transforms the temporal code from a roster of odorant components to a signal of odorant identity and facilitates discrimination of individual odorants within mixtures.