Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michal Zochowski is active.

Publication


Featured researches published by Michal Zochowski.


Physical Review E | 2005

Transition from local to global phase synchrony in small world neural network and its possible implications for epilepsy

Bethany Percha; Rhonda Dzakpasu; Michal Zochowski; Jack M. Parent

Temporal correlations in the brain are thought to have very dichotomous roles. On one hand they are ubiquitously present in the healthy brain and are thought to underlie feature binding during information processing. On the other hand, large-scale synchronization is an underlying mechanism of epileptic seizures. In this paper we show a potential mechanism for the transition to pathological coherence underlying seizure generation. We show that properties of phase synchronization in a two-dimensional lattice of nonidentical coupled Hindmarsh-Rose neurons change radically depending on the connectivity structure of the network. We modify the connectivity using the small world network paradigm and measure properties of phase synchronization using a previously developed measure based on assessment of the distributions of relative interspike intervals. We show that the temporal ordering undergoes a dramatic change as a function of topology of the network from local coherence strongly dependent on the distance between two neurons, to global coherence exhibiting a larger degree of ordering and spanning the whole network.


The Journal of Neuroscience | 2009

Interaction of Cellular and Network Mechanisms in Spatiotemporal Pattern Formation in Neuronal Networks

Andrew Bogaard; Jack M. Parent; Michal Zochowski; Victoria Booth

Spatiotemporal patterning of neuronal activity is considered to be an important feature of cognitive processing in the brain as well as pathological brain states, such as seizures. Here, we investigate complex interactions between intrinsic properties of neurons and network structure in the generation of network spatiotemporal patterning in the context of seizure-like synchrony. We show that membrane excitability properties have differential effects on network activity patterning for different network topologies. We consider excitatory networks consisting of neurons with excitability properties varying between type I and type II that exhibit significantly different spike frequency responses to external current stimulation, especially at firing threshold. We find that networks with type II-like neurons show higher synchronization and bursting capacity across a range of network topologies than corresponding networks with type I-like neurons. These differences in activity patterning are persistent across different network sizes, connectivity strengths, magnitudes of random external input, and the addition of inhibitory interneurons to the network, making them highly likely to be relevant to brain function. Furthermore, we show that heterogeneous networks of mixed cell types show emergent dynamical patterns even for very low mixing ratios. Specifically, the addition of a small percentage of type II-like cells into a network of type I-like cells can markedly change the patterning of network activity. These findings suggest that cellular as well as network mechanisms can go hand in hand, leading to the generation of seizure-like discharges, suggesting that a single ictogenic mechanism alone may not be responsible for seizure generation.


Physical Review E | 2009

Functional clustering algorithm for the analysis of dynamic network data

Sarah Feldt; Jack Waddell; Vaughn L. Hetrick; Joshua D. Berke; Michal Zochowski

We formulate a technique for the detection of functional clusters in discrete event data. The advantage of this algorithm is that no prior knowledge of the number of functional groups is needed, as our procedure progressively combines data traces and derives the optimal clustering cutoff in a simple and intuitive manner through the use of surrogate data sets. In order to demonstrate the power of this algorithm to detect changes in network dynamics and connectivity, we apply it to both simulated neural spike train data and real neural data obtained from the mouse hippocampus during exploration and slow-wave sleep. Using the simulated data, we show that our algorithm performs better than existing methods. In the experimental data, we observe state-dependent clustering patterns consistent with known neurophysiological processes involved in memory consolidation.


PLOS Computational Biology | 2011

Cellularly-Driven Differences in Network Synchronization Propensity Are Differentially Modulated by Firing Frequency

Christian G. Fink; Victoria Booth; Michal Zochowski

Spatiotemporal pattern formation in neuronal networks depends on the interplay between cellular and network synchronization properties. The neuronal phase response curve (PRC) is an experimentally obtainable measure that characterizes the cellular response to small perturbations, and can serve as an indicator of cellular propensity for synchronization. Two broad classes of PRCs have been identified for neurons: Type I, in which small excitatory perturbations induce only advances in firing, and Type II, in which small excitatory perturbations can induce both advances and delays in firing. Interestingly, neuronal PRCs are usually attenuated with increased spiking frequency, and Type II PRCs typically exhibit a greater attenuation of the phase delay region than of the phase advance region. We found that this phenomenon arises from an interplay between the time constants of active ionic currents and the interspike interval. As a result, excitatory networks consisting of neurons with Type I PRCs responded very differently to frequency modulation compared to excitatory networks composed of neurons with Type II PRCs. Specifically, increased frequency induced a sharp decrease in synchrony of networks of Type II neurons, while frequency increases only minimally affected synchrony in networks of Type I neurons. These results are demonstrated in networks in which both types of neurons were modeled generically with the Morris-Lecar model, as well as in networks consisting of Hodgkin-Huxley-based model cortical pyramidal cells in which simulated effects of acetylcholine changed PRC type. These results are robust to different network structures, synaptic strengths and modes of driving neuronal activity, and they indicate that Type I and Type II excitatory networks may display two distinct modes of processing information.


Methods in Enzymology | 2003

Optical monitoring of neural activity using voltage-sensitive dyes.

Maja Djurisic; Michal Zochowski; Matt Wachowiak; Chun X. Falk; Lawrence B. Cohen; Dejan Zecevic

Publisher Summary This chapter discusses the optical monitoring of neural activity using voltage-sensitive dyes. An optical measurement of membrane potential using a molecular probe can be beneficial in a variety of circumstances. One advantage is the possibility of simultaneous measurements from many locations. Several different optical properties of membrane-bound dyes are sensitive to membrane potential, including fluorescence, absorption, dichroism, birefringence, fluorescence resonance energy transfer (FRET), nonlinear second harmonic generation, and resonance Raman absorption. Different kinds of staining are used in the two experiments described in the chapter: (1) For studying the membrane potential in individual dendrites of a neuron, the dye was released from an intracellular electrode in the soma and then allowed to spread into the dendritic tree, and (2) for the population signals, the olfactory bulb was superfused for 60 min in a solution of the dye. Neuron-type-specific staining can make it possible to determine the role of specific neuron types in generating the input-output function of a brain region.


Nature Communications | 2017

Parvalbumin-expressing interneurons coordinate hippocampal network dynamics required for memory consolidation

Nicolette Ognjanovski; Samantha Schaeffer; Jiaxing Wu; Sima Mofakham; Daniel Maruyama; Michal Zochowski; Sara J. Aton

Activity in hippocampal area CA1 is essential for consolidating episodic memories, but it is unclear how CA1 activity patterns drive memory formation. We find that in the hours following single-trial contextual fear conditioning (CFC), fast-spiking interneurons (which typically express parvalbumin (PV)) show greater firing coherence with CA1 network oscillations. Post-CFC inhibition of PV+ interneurons blocks fear memory consolidation. This effect is associated with loss of two network changes associated with normal consolidation: (1) augmented sleep-associated delta (0.5–4 Hz), theta (4–12 Hz) and ripple (150–250 Hz) oscillations; and (2) stabilization of CA1 neurons’ functional connectivity patterns. Rhythmic activation of PV+ interneurons increases CA1 network coherence and leads to a sustained increase in the strength and stability of functional connections between neurons. Our results suggest that immediately following learning, PV+ interneurons drive CA1 oscillations and reactivation of CA1 ensembles, which directly promotes network plasticity and long-term memory formation.


Frontiers in Systems Neuroscience | 2014

CA1 hippocampal network activity changes during sleep-dependent memory consolidation

Nicolette Ognjanovski; Daniel Maruyama; Nora Lashner; Michal Zochowski; Sara J. Aton

A period of sleep over the first few hours following single-trial contextual fear conditioning (CFC) is essential for hippocampally-mediated memory consolidation. Recent studies have uncovered intracellular mechanisms required for memory formation which are affected by post-conditioning sleep and sleep deprivation. However, almost nothing is known about the circuit-level activity changes during sleep that underlie activation of these intracellular pathways. Here we continuously recorded from the CA1 region of freely-behaving mice to characterize neuronal and network activity changes occurring during active memory consolidation. C57BL/6J mice were implanted with custom stereotrode recording arrays to monitor activity of individual CA1 neurons, local field potentials (LFPs), and electromyographic activity. Sleep architecture and state-specific CA1 activity patterns were assessed during a 24 h baseline recording period, and for 24 h following either single-trial CFC or Sham conditioning. We find that consolidation of CFC is not associated with significant sleep architecture changes, but is accompanied by long-lasting increases in CA1 neuronal firing, as well as increases in delta, theta, and gamma-frequency CA1 LFP activity. These changes occurred in both sleep and wakefulness, and may drive synaptic plasticity within the hippocampus during memory formation. We also find that functional connectivity within the CA1 network, assessed through functional clustering algorithm (FCA) analysis of spike timing relationships among recorded neurons, becomes more stable during consolidation of CFC. This increase in network stability was not present following Sham conditioning, was most evident during post-CFC slow wave sleep (SWS), and was negligible during post-CFC wakefulness. Thus in the interval between encoding and recall, SWS may stabilize the hippocampal contextual fear memory (CFM) trace by promoting CA1 network stability.


Journal of Neuroscience Methods | 2007

Causal entropies—A measure for determining changes in the temporal organization of neural systems

Jack Waddell; Rhonda Dzakpasu; Victoria Booth; Brett T. Riley; Jonathan Reasor; Gina R. Poe; Michal Zochowski

We propose a novel measure to detect temporal ordering in the activity of individual neurons in a local network, which is thought to be a hallmark of activity-dependent synaptic modifications during learning. The measure, called causal entropy, is based on the time-adaptive detection of asymmetries in the relative temporal patterning between neuronal pairs. We characterize properties of the measure on both simulated data and experimental multiunit recordings of hippocampal neurons from the awake, behaving rat, and show that the metric can more readily detect those asymmetries than standard cross correlation-based techniques, especially since the temporal sensitivity of causal entropy can detect such changes rapidly and dynamically.


Physical Biology | 2010

Local dynamics of gap-junction-coupled interneuron networks

Troy Lau; Gregory J. Gage; Joshua D. Berke; Michal Zochowski

Interneurons coupled by both electrical gap-junctions (GJs) and chemical GABAergic synapses are major components of forebrain networks. However, their contributions to the generation of specific activity patterns, and their overall contributions to network function, remain poorly understood. Here we demonstrate, using computational methods, that the topological properties of interneuron networks can elicit a wide range of activity dynamics, and either prevent or permit local pattern formation. We systematically varied the topology of GJ and inhibitory chemical synapses within simulated networks, by changing connection types from local to random, and changing the total number of connections. As previously observed we found that randomly coupled GJs lead to globally synchronous activity. In contrast, we found that local GJ connectivity may govern the formation of highly spatially heterogeneous activity states. These states are inherently temporally unstable when the input is uniformly random, but can rapidly stabilize when the network detects correlations or asymmetries in the inputs. We show a correspondence between this feature of network activity and experimental observations of transient stabilization of striatal fast-spiking interneurons (FSIs), in electrophysiological recordings from rats performing a simple decision-making task. We suggest that local GJ coupling enables an active search-and-select function of striatal FSIs, which contributes to the overall role of cortical-basal ganglia circuits in decision-making.


PLOS Computational Biology | 2013

A Dynamical Role for Acetylcholine in Synaptic Renormalization

Christian G. Fink; Geoffrey G. Murphy; Michal Zochowski; Victoria Booth

Although sleep is a fundamental behavior observed in virtually all animal species, its functions remain unclear. One leading proposal, known as the synaptic renormalization hypothesis, suggests that sleep is necessary to counteract a global strengthening of synapses that occurs during wakefulness. Evidence for sleep-dependent synaptic downscaling (or synaptic renormalization) has been observed experimentally, but the physiological mechanisms which generate this phenomenon are unknown. In this study, we propose that changes in neuronal membrane excitability induced by acetylcholine may provide a dynamical mechanism for both wake-dependent synaptic upscaling and sleep-dependent downscaling. We show in silico that cholinergically-induced changes in network firing patterns alter overall network synaptic potentiation when synaptic strengths evolve through spike-timing dependent plasticity mechanisms. Specifically, network synaptic potentiation increases dramatically with high cholinergic concentration and decreases dramatically with low levels of acetylcholine. We demonstrate that this phenomenon is robust across variation of many different network parameters.

Collaboration


Dive into the Michal Zochowski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge