Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin J. Murray is active.

Publication


Featured researches published by Benjamin J. Murray.


Nature | 2013

The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds

James D. Atkinson; Benjamin J. Murray; Matthew T. Woodhouse; Thomas F. Whale; K. J. Baustian; Kenneth S. Carslaw; Steven Dobbie; Daniel O’Sullivan; T. L. Malkin

The amount of ice present in mixed-phase clouds, which contain both supercooled liquid water droplets and ice particles, affects cloud extent, lifetime, particle size and radiative properties. The freezing of cloud droplets can be catalysed by the presence of aerosol particles known as ice nuclei. One of the most important ice nuclei is thought to be mineral dust aerosol from arid regions. It is generally assumed that clay minerals, which contribute approximately two-thirds of the dust mass, dominate ice nucleation by mineral dust, and many experimental studies have therefore focused on these materials. Here we use an established droplet-freezing technique to show that feldspar minerals dominate ice nucleation by mineral dusts under mixed-phase cloud conditions, despite feldspar being a minor component of dust emitted from arid regions. We also find that clay minerals are relatively unimportant ice nuclei. Our results from a global aerosol model study suggest that feldspar ice nuclei are globally distributed and that feldspar particles may account for a large proportion of the ice nuclei in Earth’s atmosphere that contribute to freezing at temperatures below about −15 °C.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Viscosity of α-pinene secondary organic material and implications for particle growth and reactivity

Lindsay Renbaum-Wolff; James W. Grayson; Adam P. Bateman; Mikinori Kuwata; Mathieu Sellier; Benjamin J. Murray; John E. Shilling; Scot T. Martin; Allan K. Bertram

Particles composed of secondary organic material (SOM) are abundant in the lower troposphere. The viscosity of these particles is a fundamental property that is presently poorly quantified yet required for accurate modeling of their formation, growth, evaporation, and environmental impacts. Using two unique techniques, namely a “bead-mobility” technique and a “poke-flow” technique, in conjunction with simulations of fluid flow, the viscosity of the water-soluble component of SOM produced by α-pinene ozonolysis is quantified for 20- to 50-μm particles at 293–295 K. The viscosity is comparable to that of honey at 90% relative humidity (RH), similar to that of peanut butter at 70% RH, and at least as viscous as bitumen at ≤30% RH, implying that the studied SOM ranges from liquid to semisolid or solid across the range of atmospheric RH. These data combined with simple calculations or previous modeling studies are used to show the following: (i) the growth of SOM by the exchange of organic molecules between gas and particle may be confined to the surface region of the particles for RH ≤ 30%; (ii) at ≤30% RH, the particle-mass concentrations of semivolatile and low-volatility organic compounds may be overpredicted by an order of magnitude if instantaneous equilibrium partitioning is assumed in the bulk of SOM particles; and (iii) the diffusivity of semireactive atmospheric oxidants such as ozone may decrease by two to five orders of magnitude for a drop in RH from 90% to 30%. These findings have possible consequences for predictions of air quality, visibility, and climate.


Nature | 2015

A marine biogenic source of atmospheric ice-nucleating particles

Theodore W. Wilson; L. A. Ladino; Peter A. Alpert; Mark N. Breckels; Ian M. Brooks; J. Browse; Susannah M. Burrows; Kenneth S. Carslaw; J. Alex Huffman; Christopher Judd; Wendy P. Kilthau; Ryan H. Mason; Gordon McFiggans; Lisa A. Miller; Juan J. Nájera; Elena Polishchuk; Stuart Rae; C. L. Schiller; Meng Si; Jesus Vergara Temprado; Thomas F. Whale; J. P. S. Wong; Oliver Wurl; J. D. Yakobi-Hancock; Jonathan P. D. Abbatt; Josephine Y. Aller; Allan K. Bertram; Daniel A. Knopf; Benjamin J. Murray

The amount of ice present in clouds can affect cloud lifetime, precipitation and radiative properties. The formation of ice in clouds is facilitated by the presence of airborne ice-nucleating particles. Sea spray is one of the major global sources of atmospheric particles, but it is unclear to what extent these particles are capable of nucleating ice. Sea-spray aerosol contains large amounts of organic material that is ejected into the atmosphere during bubble bursting at the organically enriched sea–air interface or sea surface microlayer. Here we show that organic material in the sea surface microlayer nucleates ice under conditions relevant for mixed-phase cloud and high-altitude ice cloud formation. The ice-nucleating material is probably biogenic and less than approximately 0.2 micrometres in size. We find that exudates separated from cells of the marine diatom Thalassiosira pseudonana nucleate ice, and propose that organic material associated with phytoplankton cell exudates is a likely candidate for the observed ice-nucleating ability of the microlayer samples. Global model simulations of marine organic aerosol, in combination with our measurements, suggest that marine organic material may be an important source of ice-nucleating particles in remote marine environments such as the Southern Ocean, North Pacific Ocean and North Atlantic Ocean.


Nature | 2005

The formation of cubic ice under conditions relevant to Earth's atmosphere.

Benjamin J. Murray; Daniel A. Knopf; Allan K. Bertram

An important mechanism for ice cloud formation in the Earths atmosphere is homogeneous nucleation of ice in aqueous droplets, and this process is generally assumed to produce hexagonal ice. However, there are some reports that the metastable crystalline phase of ice, cubic ice, may form in the Earths atmosphere. Here we present laboratory experiments demonstrating that cubic ice forms when micrometre-sized droplets of pure water and aqueous solutions freeze homogeneously at cooling rates approaching those found in the atmosphere. We find that the formation of cubic ice is dominant when droplets freeze at temperatures below 190 K, which is in the temperature range relevant for polar stratospheric clouds and clouds in the tropical tropopause region. These results, together with heat transfer calculations, suggest that cubic ice will form in the Earths atmosphere. If there were a significant fraction of cubic ice in some cold clouds this could increase their water vapour pressure, and modify their microphysics and ice particle size distributions. Under specific conditions this may lead to enhanced dehydration of the tropopause region.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Structure of ice crystallized from supercooled water

T. L. Malkin; Benjamin J. Murray; Andrey V. Brukhno; Jamshed Anwar; Christoph G. Salzmann

The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. At ambient conditions, ice is considered to exist in two crystalline forms: stable hexagonal ice and metastable cubic ice. Using X-ray diffraction data and Monte Carlo simulations, we show that ice that crystallizes homogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I. Stacking disorder and stacking faults have been reported earlier for metastable ice I, but only for ice crystallizing in mesopores and in samples recrystallized from high-pressure ice phases rather than in water droplets. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder. These findings highlight the need to reevaluate the physical and thermodynamic properties of this metastable ice as a function of the nature and extent of stacking disorder using well-characterized samples.


Physical Chemistry Chemical Physics | 2010

Kinetics of the homogeneous freezing of water

Benjamin J. Murray; Sarah Broadley; Theodore W. Wilson; S. J. Bull; R. H. Wills; Hugo K. Christenson; E. J. Murray

Rates of homogeneous nucleation of ice in micrometre-sized water droplets are reported. Measurements were made using a new system in which droplets were supported on a hydrophobic substrate and their phase was monitored using optical microscopy as they were cooled at a controlled rate. Our nucleation rates are in agreement, given the quoted uncertainties, with the most recent literature data. However, the level of uncertainty in the rate of homogeneous freezing remains unacceptable given the importance of homogeneous nucleation to cloud formation in the Earths atmosphere. We go on to use the most recent thermodynamic data for cubic ice (the metastable phase thought to nucleate from supercooled water) to estimate the interfacial energy of the cubic ice-supercooled water interface. We estimate a value of 20.8 +/- 1.2 mJ m(-2) in the temperature range 234.9-236.7 K.


Journal of Geophysical Research | 1999

Infrared spectroscopic study of the deliquescence and efflorescence of ammonium sulfate aerosol as a function of temperature

Timothy B. Onasch; Ronald L. Siefert; Sarah D. Brooks; Anthony J. Prenni; Benjamin J. Murray; Margaret A. Wilson; Margaret A. Tolbert

The deliquescence and efflorescence phase transitions of ammonium sulfate aerosols have been studied as a function of relative humidity (RH) over the temperature range from 234 K to 295 K. Polydisperse submicrometer ammonium sulfate particles produced by atomization were monitored in a temperature-controlled flow tube system using Fourier transform infrared spectroscopy. The relative humidity in the aerosol flow was controlled using a sulfuric acid bath conditioner and the addition of a known flow of dry nitrogen. The relative humidity was measured using a dew point hygrometer and infrared absorption features. The deliquescence transition was observed to be nearly independent of temperature, changing from 80% RH at 294.8 K to 82% RH at 258.0 K near the ice saturation line, in good agreement with previous results. The relative humidity at the efflorescence transition also increased slightly (32% to 39%) with decreasing temperature (294.8 K to 234.3 K). These results suggest that once a crystalline ammonium sulfate particle deliquesces, the droplet can exist as a metastable solution droplet over a broad region of temperature and water pressures under the conditions in the upper troposphere. The persistence of metastable ammonium sulfate solution droplets may have important implications for cirrus cloud formation and heterogeneous reaction rates in the upper troposphere.


Scientific Reports | 2015

The relevance of nanoscale biological fragments for ice nucleation in clouds

Daniel O'Sullivan; Benjamin J. Murray; James F. Ross; Thomas F. Whale; H. C. Price; James D. Atkinson; N. S. Umo; Michael E. Webb

Most studies of the role of biological entities as atmospheric ice-nucleating particles have focused on relatively rare supermicron particles such as bacterial cells, fungal spores and pollen grains. However, it is not clear that there are sufficient numbers of these particles in the atmosphere to strongly influence clouds. Here we show that the ice-nucleating activity of a fungus from the ubiquitous genus Fusarium is related to the presence of nanometre-scale particles which are far more numerous, and therefore potentially far more important for cloud glaciation than whole intact spores or hyphae. In addition, we quantify the ice-nucleating activity of nano-ice nucleating particles (nano-INPs) washed off pollen and also show that nano-INPs are present in a soil sample. Based on these results, we suggest that there is a reservoir of biological nano-INPs present in the environment which may, for example, become aerosolised in association with fertile soil dust particles.


Physical Chemistry Chemical Physics | 2006

Formation and stability of cubic ice in water droplets

Benjamin J. Murray; Allan K. Bertram

There is growing evidence that a metastable phase of ice, cubic ice, plays an important role in the Earths troposphere and stratosphere. Cubic ice may also be important in diverse fields such as cryobiology and planetary sciences. Using X-ray diffraction, we studied the formation of cubic ice in pure water droplets suspended in an oil matrix as a function of droplet size. The results show that droplets of volume median diameter 5.6 microm froze dominantly to cubic ice with stacking faults. These results support previous suggestions that cubic ice is the crystalline phase that nucleates when pure water droplets freeze homogeneously at approximately 235 K. It is also shown that as the size of the water droplets increased from 5.6 to 17.0 microm, the formation of the stable phase of ice, hexagonal ice, was favoured. This size dependence can be rationalised with heat transfer calculations. We also investigated the stability of cubic ice that forms in water droplets suspended in an oil matrix. We observe cubic ice up to 243 K, much higher in temperature than observed in many previous studies. This result adds to the existing literature that shows bulk ice I(c) can persist up to approximately 240 K. The transformation of cubic ice to hexagonal ice also showed a complex time and temperature dependence, proceeding rapidly at first and then slowing down and coming to a halt. These combined results help explain why cubic ice forms in some experiments described in the literature and not others.


Cryobiology | 2012

Freezing injury: the special case of the sperm cell.

G. John Morris; Elizabeth Acton; Benjamin J. Murray; Fernanda Fonseca

The cellular damage that spermatozoa encounter at rapid rates of cooling has often been attributed to the formation of intracellular ice although no convincing evidence of intracellular ice formation has ever been obtained. We demonstrate that the high intracellular protein content together with the osmotic shrinkage associated with extracellular ice formation leads to intracellular vitrification of spermatozoa during cooling. At rapid rates of cooling the cell damage to spermatozoa is a result of an osmotic imbalance encountered during thawing, not intracellular ice formation. The osmotic imbalance occurs at rapid cooling rates due to a diffusion limited ice crystallisation in the extracellular fluid, i.e. the amount of ice forming during the cooling is less than expected from the equilibrium phase diagram. This explanation allows insights into other aspects of the cryobiology of spermatozoa and it is anticipated that this understanding will lead to specific improved methods of conventional cryopreservation for mammalian spermatozoa. It is also likely that this model will be relevant to the development of novel technologies for sperm preservation including vitrification and freeze drying.

Collaboration


Dive into the Benjamin J. Murray's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Allan K. Bertram

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge