Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel O'Sullivan is active.

Publication


Featured researches published by Daniel O'Sullivan.


Scientific Reports | 2015

The relevance of nanoscale biological fragments for ice nucleation in clouds

Daniel O'Sullivan; Benjamin J. Murray; James F. Ross; Thomas F. Whale; H. C. Price; James D. Atkinson; N. S. Umo; Michael E. Webb

Most studies of the role of biological entities as atmospheric ice-nucleating particles have focused on relatively rare supermicron particles such as bacterial cells, fungal spores and pollen grains. However, it is not clear that there are sufficient numbers of these particles in the atmosphere to strongly influence clouds. Here we show that the ice-nucleating activity of a fungus from the ubiquitous genus Fusarium is related to the presence of nanometre-scale particles which are far more numerous, and therefore potentially far more important for cloud glaciation than whole intact spores or hyphae. In addition, we quantify the ice-nucleating activity of nano-ice nucleating particles (nano-INPs) washed off pollen and also show that nano-INPs are present in a soil sample. Based on these results, we suggest that there is a reservoir of biological nano-INPs present in the environment which may, for example, become aerosolised in association with fertile soil dust particles.


Ecology Letters | 2013

Eco-evolutionary dynamics in response to selection on life-history

Tom C. Cameron; Daniel O'Sullivan; Alan Reynolds; Stuart B. Piertney; Tim G. Benton

Understanding the consequences of environmental change on ecological and evolutionary dynamics is inherently problematic because of the complex interplay between them. Using invertebrates in microcosms, we characterise phenotypic, population and evolutionary dynamics before, during and after exposure to a novel environment and harvesting over 20 generations. We demonstrate an evolved change in life-history traits (the age- and size-at-maturity, and survival to maturity) in response to selection caused by environmental change (wild to laboratory) and to harvesting (juvenile or adult). Life-history evolution, which drives changes in population growth rate and thus population dynamics, includes an increase in age-to-maturity of 76% (from 12.5 to 22 days) in the unharvested populations as they adapt to the new environment. Evolutionary responses to harvesting are outweighed by the response to environmental change (∼ 1.4 vs. 4% change in age-at-maturity per generation). The adaptive response to environmental change converts a negative population growth trajectory into a positive one: an example of evolutionary rescue.


Atmospheric Measurement Techniques | 2014

A technique for quantifying heterogeneous ice nucleation in microlitre supercooled water droplets

Thomas F. Whale; Benjamin J. Murray; Daniel O'Sullivan; Theodore W. Wilson; N. S. Umo; K. J. Baustian; J. D. Atkinson; D. A. Workneh; G.J. Morris

Abstract. In many clouds, the formation of ice requires the presence of particles capable of nucleating ice. Ice-nucleating particles (INPs) are rare in comparison to cloud condensation nuclei. However, the fact that only a small fraction of aerosol particles can nucleate ice means that detection and quantification of INPs is challenging. This is particularly true at temperatures above about −20 °C since the population of particles capable of serving as INPs decreases dramatically with increasing temperature. In this paper, we describe an experimental technique in which droplets of microlitre volume containing ice-nucleating material are cooled down at a controlled rate and their freezing temperatures recorded. The advantage of using large droplet volumes is that the surface area per droplet is vastly larger than in experiments focused on single aerosol particles or cloud-sized droplets. This increases the probability of observing the effect of less common, but important, high-temperature INPs and therefore allows the quantification of their ice nucleation efficiency. The potential artefacts which could influence data from this experiment, and other similar experiments, are mitigated and discussed. Experimentally determined heterogeneous ice nucleation efficiencies for K-feldspar (microcline), kaolinite, chlorite, NX-illite, Snomax® and silver iodide are presented.


Journal of Geophysical Research | 2018

Is Black Carbon an Unimportant Ice‐Nucleating Particle in Mixed‐Phase Clouds?

Jesús Vergara-Temprado; Mark A. Holden; Thomas R. Orton; Daniel O'Sullivan; Nsikanabasi S. Umo; J. Browse; C. L. Reddington; M. T. Baeza-Romero; J.M. Jones; Amanda Lea-Langton; A. Williams; Kenneth S. Carslaw; Benjamin J. Murray

Abstract It has been hypothesized that black carbon (BC) influences mixed‐phase clouds by acting as an ice‐nucleating particle (INP). However, the literature data for ice nucleation by BC immersed in supercooled water are extremely varied, with some studies reporting that BC is very effective at nucleating ice, whereas others report no ice‐nucleating ability. Here we present new experimental results for immersion mode ice nucleation by BC from two contrasting fuels (n‐decane and eugenol). We observe no significant heterogeneous nucleation by either sample. Using a global aerosol model, we quantify the maximum relative importance of BC for ice nucleation when compared with K‐feldspar and marine organic aerosol acting as INP. Based on the upper limit from our laboratory data, we show that BC contributes at least several orders of magnitude less INP than feldspar and marine organic aerosol. Representations of its atmospheric ice‐nucleating ability based on older laboratory data produce unrealistic results when compared against ambient observations of INP. Since BC is a complex material, it cannot be unambiguously ruled out as an important INP species in all locations at all times. Therefore, we use our model to estimate a range of values for the density of active sites that BC particles must have to be relevant for ice nucleation in the atmosphere. The estimated values will guide future work on BC, defining the required sensitivity of future experimental studies.


Ecology and Evolution | 2016

Harvested populations are more variable only in more variable environments.

Tom C. Cameron; Daniel O'Sullivan; Alan Reynolds; Joseph P. Hicks; Stuart B. Piertney; Tim G. Benton

Abstract The interaction between environmental variation and population dynamics is of major importance, particularly for managed and economically important species, and especially given contemporary changes in climate variability. Recent analyses of exploited animal populations contested whether exploitation or environmental variation has the greatest influence on the stability of population dynamics, with consequences for variation in yield and extinction risk. Theoretical studies however have shown that harvesting can increase or decrease population variability depending on environmental variation, and requested controlled empirical studies to test predictions. Here, we use an invertebrate model species in experimental microcosms to explore the interaction between selective harvesting and environmental variation in food availability in affecting the variability of stage‐structured animal populations over 20 generations. In a constant food environment, harvesting adults had negligible impact on population variability or population size, but in the variable food environments, harvesting adults increased population variability and reduced its size. The impact of harvesting on population variability differed between proportional and threshold harvesting, between randomly and periodically varying environments, and at different points of the time series. Our study suggests that predicting the responses to selective harvesting is sensitive to the demographic structures and processes that emerge in environments with different patterns of environmental variation.


NUCLEATION AND ATMOSPHERIC AEROSOLS: 19th International Conference | 2013

Atmospheric ice nucleation by fertile soil dusts particles: Relative importance of mineral and biological components

Daniel O'Sullivan; Benjamin J. Murray; T. L. Malkin; Michael E. Webb; Thomas F. Whale; James D. Atkinson; K. J. Baustian

Dusts emitted from agricultural soils may represent a significant source of atmospheric particulates at mid-latitudes. Such dusts, which can be aerosolised by anthropogenic agricultural activities, have previously been estimated to be present in the atmosphere at sufficient number densities that they could potentially compete with other known ice nuclei (IN). In contrast to soils from arid regions, such as the Sahara, fertile soils contain a larger fraction of biological material, which can lead to an enhancement in the ice nucleating ability of their associated dusts. However, considerable uncertainties remain regarding the relative efficacy of soil dust particles from fertile soils as IN. Using an experimental methodology designed to increase sensitivity to a wide range of ice nucleation efficiencies, we have characterized the immersion mode ice nucleating activities of sub 11 μm particles extracted from surface soils collected in four locations around England. By using a variety of droplet sizes, from ...


NUCLEATION AND ATMOSPHERIC AEROSOLS: 19th International Conference | 2013

Ice nucleation efficiency of soot from biomass combustion

N. S. Umo; Benjamin J. Murray; Daniel O'Sullivan; M. T. Baeza Romero; Jmc Plane

Do Soot aerosols in the atmosphere indirectly influence the radiative budget of the Earth by modifying cloud properties, either by acting as cloud condensation nuclei (CCN) or as ice nuclei (IN). The ice nucleation activity of soot remains poorly quantified and there is a need to parameterise its impact for use in cloud-aerosol models. Here, we investigate the ice nucleation activity of eugenol soot in the immersion mode at conditions relevant to mixed-phase clouds. Eugenol is used as a proxy for a biomass combustion source. The efficiency of soot as an IN was quantified using droplet freezing techniques with droplet volumes ranging from nanolitre (∼100 μm diameter) to microliter (∼1 mm diameter). We show that soot nucleates ice in our experiments at temperatures up to −14°C, although the efficiency with which it does so is less than for mineral dust on a per surface area basis. An estimation of the IN number concentration that could result from our eugenol soot showed that, on a global average basis, IN ...


Chemical Society Reviews | 2012

Ice nucleation by particles immersed in supercooled cloud droplets

Benjamin J. Murray; Daniel O'Sullivan; J. D. Atkinson; Michael E. Webb


Atmospheric Chemistry and Physics | 2014

A comprehensive laboratory study on the immersion freezing behavior of illite NX particles: a comparison of 17 ice nucleation measurement techniques

Naruki Hiranuma; Stefanie Augustin-Bauditz; Heinz Bingemer; Carsten Budke; Joachim Curtius; Anja Danielczok; K. Diehl; Katharina Dreischmeier; Martin Ebert; Fabian Frank; Nadine Hoffmann; Konrad Kandler; Alexei Kiselev; Thomas Koop; Thomas Leisner; Ottmar Möhler; Björn Nillius; Andreas Peckhaus; D. Rose; Stephan Weinbruch; Heike Wex; Yvonne Boose; Paul J. DeMott; John D. Hader; Thomas C. J. Hill; Zamin A. Kanji; Gargi Kulkarni; E. J. T. Levin; Christina S. McCluskey; Masataka Murakami


Atmospheric Chemistry and Physics | 2014

Ice nucleation by fertile soil dusts: Relative importance of mineral and biogenic components

Daniel O'Sullivan; Benjamin J. Murray; T. L. Malkin; Thomas F. Whale; N. S. Umo; J. D. Atkinson; H. C. Price; K. J. Baustian; J. Browse; Michael E. Webb

Collaboration


Dive into the Daniel O'Sullivan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge