Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin J. Raphael is active.

Publication


Featured researches published by Benjamin J. Raphael.


Nature | 2013

Mutational landscape and significance across 12 major cancer types

Cyriac Kandoth; Michael D. McLellan; Fabio Vandin; Kai Ye; Beifang Niu; Charles Lu; Mingchao Xie; Qunyuan Zhang; Joshua F. McMichael; Matthew A. Wyczalkowski; Mark D. M. Leiserson; Christopher A. Miller; John S. Welch; Matthew J. Walter; Michael C. Wendl; Timothy J. Ley; Richard Wilson; Benjamin J. Raphael; Li Ding

The Cancer Genome Atlas (TCGA) has used the latest sequencing and analysis methods to identify somatic variants across thousands of tumours. Here we present data and analytical results for point mutations and small insertions/deletions from 3,281 tumours across 12 tumour types as part of the TCGA Pan-Cancer effort. We illustrate the distributions of mutation frequencies, types and contexts across tumour types, and establish their links to tissues of origin, environmental/carcinogen influences, and DNA repair defects. Using the integrated data sets, we identified 127 significantly mutated genes from well-known (for example, mitogen-activated protein kinase, phosphatidylinositol-3-OH kinase, Wnt/β-catenin and receptor tyrosine kinase signalling pathways, and cell cycle control) and emerging (for example, histone, histone modification, splicing, metabolism and proteolysis) cellular processes in cancer. The average number of mutations in these significantly mutated genes varies across tumour types; most tumours have two to six, indicating that the number of driver mutations required during oncogenesis is relatively small. Mutations in transcriptional factors/regulators show tissue specificity, whereas histone modifiers are often mutated across several cancer types. Clinical association analysis identifies genes having a significant effect on survival, and investigations of mutations with respect to clonal/subclonal architecture delineate their temporal orders during tumorigenesis. Taken together, these results lay the groundwork for developing new diagnostics and individualizing cancer treatment.


Nature | 2012

The mutational landscape of lethal castration-resistant prostate cancer

Catherine S. Grasso; Yi Mi Wu; Dan R. Robinson; Xuhong Cao; Saravana M. Dhanasekaran; Amjad P. Khan; Michael J. Quist; Xiaojun Jing; Robert J. Lonigro; J. Chad Brenner; Irfan A. Asangani; Bushra Ateeq; Sang Y. Chun; Javed Siddiqui; Lee Sam; Matt Anstett; Rohit Mehra; John R. Prensner; Nallasivam Palanisamy; Gregory A Ryslik; Fabio Vandin; Benjamin J. Raphael; Lakshmi P. Kunju; Daniel R. Rhodes; Kenneth J. Pienta; Arul M. Chinnaiyan; Scott A. Tomlins

Characterization of the prostate cancer transcriptome and genome has identified chromosomal rearrangements and copy number gains and losses, including ETS gene family fusions, PTEN loss and androgen receptor (AR) amplification, which drive prostate cancer development and progression to lethal, metastatic castration-resistant prostate cancer (CRPC). However, less is known about the role of mutations. Here we sequenced the exomes of 50 lethal, heavily pre-treated metastatic CRPCs obtained at rapid autopsy (including three different foci from the same patient) and 11 treatment-naive, high-grade localized prostate cancers. We identified low overall mutation rates even in heavily treated CRPCs (2.00 per megabase) and confirmed the monoclonal origin of lethal CRPC. Integrating exome copy number analysis identified disruptions of CHD1 that define a subtype of ETS gene family fusion-negative prostate cancer. Similarly, we demonstrate that ETS2, which is deleted in approximately one-third of CRPCs (commonly through TMPRSS2:ERG fusions), is also deregulated through mutation. Furthermore, we identified recurrent mutations in multiple chromatin- and histone-modifying genes, including MLL2 (mutated in 8.6% of prostate cancers), and demonstrate interaction of the MLL complex with the AR, which is required for AR-mediated signalling. We also identified novel recurrent mutations in the AR collaborating factor FOXA1, which is mutated in 5 of 147 (3.4%) prostate cancers (both untreated localized prostate cancer and CRPC), and showed that mutated FOXA1 represses androgen signalling and increases tumour growth. Proteins that physically interact with the AR, such as the ERG gene fusion product, FOXA1, MLL2, UTX (also known as KDM6A) and ASXL1 were found to be mutated in CRPC. In summary, we describe the mutational landscape of a heavily treated metastatic cancer, identify novel mechanisms of AR signalling deregulated in prostate cancer, and prioritize candidates for future study.


PLOS Biology | 2007

The Sorcerer II Global Ocean Sampling Expedition: Expanding the Universe of Protein Families

Shibu Yooseph; Granger Sutton; Douglas B. Rusch; Aaron L. Halpern; Shannon J. Williamson; Karin A. Remington; Jonathan A. Eisen; Karla B. Heidelberg; Gerard Manning; Weizhong Li; Lukasz Jaroszewski; Piotr Cieplak; Christopher S. Miller; Huiying Li; Susan T. Mashiyama; Marcin P Joachimiak; Christopher van Belle; John-Marc Chandonia; David A W Soergel; Yufeng Zhai; Kannan Natarajan; Shaun W. Lee; Benjamin J. Raphael; Vineet Bafna; Robert Friedman; Steven E. Brenner; Adam Godzik; David Eisenberg; Jack E. Dixon; Susan S. Taylor

Metagenomics projects based on shotgun sequencing of populations of micro-organisms yield insight into protein families. We used sequence similarity clustering to explore proteins with a comprehensive dataset consisting of sequences from available databases together with 6.12 million proteins predicted from an assembly of 7.7 million Global Ocean Sampling (GOS) sequences. The GOS dataset covers nearly all known prokaryotic protein families. A total of 3,995 medium- and large-sized clusters consisting of only GOS sequences are identified, out of which 1,700 have no detectable homology to known families. The GOS-only clusters contain a higher than expected proportion of sequences of viral origin, thus reflecting a poor sampling of viral diversity until now. Protein domain distributions in the GOS dataset and current protein databases show distinct biases. Several protein domains that were previously categorized as kingdom specific are shown to have GOS examples in other kingdoms. About 6,000 sequences (ORFans) from the literature that heretofore lacked similarity to known proteins have matches in the GOS data. The GOS dataset is also used to improve remote homology detection. Overall, besides nearly doubling the number of current proteins, the predicted GOS proteins also add a great deal of diversity to known protein families and shed light on their evolution. These observations are illustrated using several protein families, including phosphatases, proteases, ultraviolet-irradiation DNA damage repair enzymes, glutamine synthetase, and RuBisCO. The diversity added by GOS data has implications for choosing targets for experimental structure characterization as part of structural genomics efforts. Our analysis indicates that new families are being discovered at a rate that is linear or almost linear with the addition of new sequences, implying that we are still far from discovering all protein families in nature.


Nature Genetics | 2015

Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes

Mark D. M. Leiserson; Fabio Vandin; Hsin-Ta Wu; Jason R. Dobson; Jonathan V Eldridge; Jacob L Thomas; Alexandra Papoutsaki; Younhun Kim; Beifang Niu; Michael D. McLellan; Michael S. Lawrence; Abel Gonzalez-Perez; David Tamborero; Yuwei Cheng; Gregory A Ryslik; Nuria Lopez-Bigas; Gad Getz; Li Ding; Benjamin J. Raphael

Cancers exhibit extensive mutational heterogeneity, and the resulting long-tail phenomenon complicates the discovery of genes and pathways that are significantly mutated in cancer. We perform a pan-cancer analysis of mutated networks in 3,281 samples from 12 cancer types from The Cancer Genome Atlas (TCGA) using HotNet2, a new algorithm to find mutated subnetworks that overcomes the limitations of existing single-gene, pathway and network approaches. We identify 16 significantly mutated subnetworks that comprise well-known cancer signaling pathways as well as subnetworks with less characterized roles in cancer, including cohesin, condensin and others. Many of these subnetworks exhibit co-occurring mutations across samples. These subnetworks contain dozens of genes with rare somatic mutations across multiple cancers; many of these genes have additional evidence supporting a role in cancer. By illuminating these rare combinations of mutations, pan-cancer network analyses provide a roadmap to investigate new diagnostic and therapeutic opportunities across cancer types.


Nature Genetics | 2013

The mutational landscape of adenoid cystic carcinoma

Allen S. Ho; Kasthuri Kannan; David M Roy; Luc G. T. Morris; Ian Ganly; Nora Katabi; Deepa Ramaswami; Logan A. Walsh; Stephanie Eng; Jason T. Huse; Jianan Zhang; Igor Dolgalev; Kety Huberman; Adriana Heguy; Agnes Viale; Marija Drobnjak; Margaret Leversha; Christine E Rice; Bhuvanesh Singh; N. Gopalakrishna Iyer; C. René Leemans; Elisabeth Bloemena; Robert L. Ferris; Raja R. Seethala; Benjamin E. Gross; Yupu Liang; Rileen Sinha; Luke Peng; Benjamin J. Raphael; Sevin Turcan

Adenoid cystic carcinomas (ACCs) are among the most enigmatic of human malignancies. These aggressive salivary gland cancers frequently recur and metastasize despite definitive treatment, with no known effective chemotherapy regimen. Here we determined the ACC mutational landscape and report the exome or whole-genome sequences of 60 ACC tumor-normal pairs. These analyses identified a low exonic somatic mutation rate (0.31 non-silent events per megabase) and wide mutational diversity. Notably, we found mutations in genes encoding chromatin-state regulators, such as SMARCA2, CREBBP and KDM6A, suggesting that there is aberrant epigenetic regulation in ACC oncogenesis. Mutations in genes central to the DNA damage response and protein kinase A signaling also implicate these processes. We observed MYB-NFIB translocations and somatic mutations in MYB-associated genes, solidifying the role of these aberrations as critical events in ACC. Lastly, we identified recurrent mutations in the FGF-IGF-PI3K pathway (30% of tumors) that might represent new avenues for therapy. Collectively, our observations establish a molecular foundation for understanding and exploring new treatments for ACC.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Using positional distribution to identify splicing elements and predict pre-mRNA processing defects in human genes

Kian Huat Lim; Luciana Ferraris; Madeleine E. Filloux; Benjamin J. Raphael; William G. Fairbrother

We present an intuitive strategy for predicting the effect of sequence variation on splicing. In contrast to transcriptional elements, splicing elements appear to be strongly position dependent. We demonstrated that exonic binding of the normally intronic splicing factor, U2AF65, inhibits splicing. Reasoning that the positional distribution of a splicing element is a signature of its function, we developed a method for organizing all possible sequence motifs into clusters based on the genomic profile of their positional distribution around splice sites. Binding sites for serine/arginine rich (SR) proteins tended to be exonic whereas heterogeneous ribonucleoprotein (hnRNP) recognition elements were mostly intronic. In addition to the known elements, novel motifs were returned and validated. This method was also predictive of splicing mutations. A mutation in a motif creates a new motif that sometimes has a similar distribution shape to the original motif and sometimes has a different distribution. We created an intraallelic distance measure to capture this property and found that mutations that created large intraallelic distances disrupted splicing in vivo whereas mutations with small distances did not alter splicing. Analyzing the dataset of human disease alleles revealed known splicing mutants to have high intraallelic distances and suggested that 22% of disease alleles that were originally classified as missense mutations may also affect splicing. This category together with mutations in the canonical splicing signals suggest that approximately one third of all disease-causing mutations alter pre-mRNA splicing.


Bioinformatics | 2009

A geometric approach for classification and comparison of structural variants

Suzanne S. Sindi; Elena Helman; Ali Bashir; Benjamin J. Raphael

Motivation: Structural variants, including duplications, insertions, deletions and inversions of large blocks of DNA sequence, are an important contributor to human genome variation. Measuring structural variants in a genome sequence is typically more challenging than measuring single nucleotide changes. Current approaches for structural variant identification, including paired-end DNA sequencing/mapping and array comparative genomic hybridization (aCGH), do not identify the boundaries of variants precisely. Consequently, most reported human structural variants are poorly defined and not readily compared across different studies and measurement techniques. Results: We introduce Geometric Analysis of Structural Variants (GASV), a geometric approach for identification, classification and comparison of structural variants. This approach represents the uncertainty in measurement of a structural variant as a polygon in the plane, and identifies measurements supporting the same variant by computing intersections of polygons. We derive a computational geometry algorithm to efficiently identify all such intersections. We apply GASV to sequencing data from nine individual human genomes and several cancer genomes. We obtain better localization of the boundaries of structural variants, distinguish genetic from putative somatic structural variants in cancer genomes, and integrate aCGH and paired-end sequencing measurements of structural variants. This work presents the first general framework for comparing structural variants across multiple samples and measurement techniques, and will be useful for studies of both genetic structural variants and somatic rearrangements in cancer. Availability: http://cs.brown.edu/people/braphael/software.html Contact: [email protected]


PLOS Computational Biology | 2013

Simultaneous identification of multiple driver pathways in cancer.

Mark D. M. Leiserson; Dima Blokh; Roded Sharan; Benjamin J. Raphael

Distinguishing the somatic mutations responsible for cancer (driver mutations) from random, passenger mutations is a key challenge in cancer genomics. Driver mutations generally target cellular signaling and regulatory pathways consisting of multiple genes. This heterogeneity complicates the identification of driver mutations by their recurrence across samples, as different combinations of mutations in driver pathways are observed in different samples. We introduce the Multi-Dendrix algorithm for the simultaneous identification of multiple driver pathways de novo in somatic mutation data from a cohort of cancer samples. The algorithm relies on two combinatorial properties of mutations in a driver pathway: high coverage and mutual exclusivity. We derive an integer linear program that finds set of mutations exhibiting these properties. We apply Multi-Dendrix to somatic mutations from glioblastoma, breast cancer, and lung cancer samples. Multi-Dendrix identifies sets of mutations in genes that overlap with known pathways – including Rb, p53, PI(3)K, and cell cycle pathways – and also novel sets of mutually exclusive mutations, including mutations in several transcription factors or other genes involved in transcriptional regulation. These sets are discovered directly from mutation data with no prior knowledge of pathways or gene interactions. We show that Multi-Dendrix outperforms other algorithms for identifying combinations of mutations and is also orders of magnitude faster on genome-scale data. Software available at: http://compbio.cs.brown.edu/software.


Genome Biology | 2013

THetA: inferring intra-tumor heterogeneity from high-throughput DNA sequencing data

Layla Oesper; Ahmad Mahmoody; Benjamin J. Raphael

Tumor samples are typically heterogeneous, containing admixture by normal, non-cancerous cells and one or more subpopulations of cancerous cells. Whole-genome sequencing of a tumor sample yields reads from this mixture, but does not directly reveal the cell of origin for each read. We introduce THetA (Tumor Heterogeneity Analysis), an algorithm that infers the most likely collection of genomes and their proportions in a sample, for the case where copy number aberrations distinguish subpopulations. THetA successfully estimates normal admixture and recovers clonal and subclonal copy number aberrations in real and simulated sequencing data. THetA is available at http://compbio.cs.brown.edu/software/


Nature Methods | 2015

Pathway and network analysis of cancer genomes

Pau Creixell; Jüri Reimand; Syed Haider; Guanming Wu; Tatsuhiro Shibata; Miguel Vazquez; Ville Mustonen; Abel Gonzalez-Perez; John V. Pearson; Chris Sander; Benjamin J. Raphael; Debora S. Marks; B. F. Francis Ouellette; Alfonso Valencia; Gary D. Bader; Paul C. Boutros; Joshua M. Stuart; Rune Linding; Nuria Lopez-Bigas; Lincoln Stein

Genomic information on tumors from 50 cancer types cataloged by the International Cancer Genome Consortium (ICGC) shows that only a few well-studied driver genes are frequently mutated, in contrast to many infrequently mutated genes that may also contribute to tumor biology. Hence there has been large interest in developing pathway and network analysis methods that group genes and illuminate the processes involved. We provide an overview of these analysis techniques and show where they guide mechanistic and translational investigations.

Collaboration


Dive into the Benjamin J. Raphael's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ali Bashir

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Ding

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge