Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark D. M. Leiserson is active.

Publication


Featured researches published by Mark D. M. Leiserson.


Nature | 2013

Mutational landscape and significance across 12 major cancer types

Cyriac Kandoth; Michael D. McLellan; Fabio Vandin; Kai Ye; Beifang Niu; Charles Lu; Mingchao Xie; Qunyuan Zhang; Joshua F. McMichael; Matthew A. Wyczalkowski; Mark D. M. Leiserson; Christopher A. Miller; John S. Welch; Matthew J. Walter; Michael C. Wendl; Timothy J. Ley; Richard Wilson; Benjamin J. Raphael; Li Ding

The Cancer Genome Atlas (TCGA) has used the latest sequencing and analysis methods to identify somatic variants across thousands of tumours. Here we present data and analytical results for point mutations and small insertions/deletions from 3,281 tumours across 12 tumour types as part of the TCGA Pan-Cancer effort. We illustrate the distributions of mutation frequencies, types and contexts across tumour types, and establish their links to tissues of origin, environmental/carcinogen influences, and DNA repair defects. Using the integrated data sets, we identified 127 significantly mutated genes from well-known (for example, mitogen-activated protein kinase, phosphatidylinositol-3-OH kinase, Wnt/β-catenin and receptor tyrosine kinase signalling pathways, and cell cycle control) and emerging (for example, histone, histone modification, splicing, metabolism and proteolysis) cellular processes in cancer. The average number of mutations in these significantly mutated genes varies across tumour types; most tumours have two to six, indicating that the number of driver mutations required during oncogenesis is relatively small. Mutations in transcriptional factors/regulators show tissue specificity, whereas histone modifiers are often mutated across several cancer types. Clinical association analysis identifies genes having a significant effect on survival, and investigations of mutations with respect to clonal/subclonal architecture delineate their temporal orders during tumorigenesis. Taken together, these results lay the groundwork for developing new diagnostics and individualizing cancer treatment.


Nature Genetics | 2015

Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes

Mark D. M. Leiserson; Fabio Vandin; Hsin-Ta Wu; Jason R. Dobson; Jonathan V Eldridge; Jacob L Thomas; Alexandra Papoutsaki; Younhun Kim; Beifang Niu; Michael D. McLellan; Michael S. Lawrence; Abel Gonzalez-Perez; David Tamborero; Yuwei Cheng; Gregory A Ryslik; Nuria Lopez-Bigas; Gad Getz; Li Ding; Benjamin J. Raphael

Cancers exhibit extensive mutational heterogeneity, and the resulting long-tail phenomenon complicates the discovery of genes and pathways that are significantly mutated in cancer. We perform a pan-cancer analysis of mutated networks in 3,281 samples from 12 cancer types from The Cancer Genome Atlas (TCGA) using HotNet2, a new algorithm to find mutated subnetworks that overcomes the limitations of existing single-gene, pathway and network approaches. We identify 16 significantly mutated subnetworks that comprise well-known cancer signaling pathways as well as subnetworks with less characterized roles in cancer, including cohesin, condensin and others. Many of these subnetworks exhibit co-occurring mutations across samples. These subnetworks contain dozens of genes with rare somatic mutations across multiple cancers; many of these genes have additional evidence supporting a role in cancer. By illuminating these rare combinations of mutations, pan-cancer network analyses provide a roadmap to investigate new diagnostic and therapeutic opportunities across cancer types.


PLOS Computational Biology | 2013

Simultaneous identification of multiple driver pathways in cancer.

Mark D. M. Leiserson; Dima Blokh; Roded Sharan; Benjamin J. Raphael

Distinguishing the somatic mutations responsible for cancer (driver mutations) from random, passenger mutations is a key challenge in cancer genomics. Driver mutations generally target cellular signaling and regulatory pathways consisting of multiple genes. This heterogeneity complicates the identification of driver mutations by their recurrence across samples, as different combinations of mutations in driver pathways are observed in different samples. We introduce the Multi-Dendrix algorithm for the simultaneous identification of multiple driver pathways de novo in somatic mutation data from a cohort of cancer samples. The algorithm relies on two combinatorial properties of mutations in a driver pathway: high coverage and mutual exclusivity. We derive an integer linear program that finds set of mutations exhibiting these properties. We apply Multi-Dendrix to somatic mutations from glioblastoma, breast cancer, and lung cancer samples. Multi-Dendrix identifies sets of mutations in genes that overlap with known pathways – including Rb, p53, PI(3)K, and cell cycle pathways – and also novel sets of mutually exclusive mutations, including mutations in several transcription factors or other genes involved in transcriptional regulation. These sets are discovered directly from mutation data with no prior knowledge of pathways or gene interactions. We show that Multi-Dendrix outperforms other algorithms for identifying combinations of mutations and is also orders of magnitude faster on genome-scale data. Software available at: http://compbio.cs.brown.edu/software.


Nature Communications | 2014

Integrated analysis of germline and somatic variants in ovarian cancer

Krishna L. Kanchi; Kimberly J. Johnson; Charles Lu; Michael D. McLellan; Mark D. M. Leiserson; Michael C. Wendl; Qunyuan Zhang; Daniel C. Koboldt; Mingchao Xie; Cyriac Kandoth; Joshua F. McMichael; Matthew A. Wyczalkowski; David E. Larson; Heather K. Schmidt; Christopher A. Miller; Robert S. Fulton; Paul T. Spellman; Elaine R. Mardis; Todd E. Druley; Timothy A. Graubert; Paul J. Goodfellow; Benjamin J. Raphael; Richard Wilson; Li Ding

We report the first large-scale exome-wide analysis of the combined germline-somatic landscape in ovarian cancer. Here we analyze germline and somatic alterations in 429 ovarian carcinoma cases and 557 controls. We identify 3,635 high confidence, rare truncation and 22,953 missense variants with predicted functional impact. We find germline truncation variants and large deletions across Fanconi pathway genes in 20% of cases. Enrichment of rare truncations is shown in BRCA1, BRCA2, and PALB2. Additionally, we observe germline truncation variants in genes not previously associated with ovarian cancer susceptibility (NF1, MAP3K4, CDKN2B, and MLL3). Evidence for loss of heterozygosity was found in 100% and 76% of cases with germline BRCA1 and BRCA2 truncations respectively. Germline-somatic interaction analysis combined with extensive bioinformatics annotation identifies 237 candidate functional germline truncation and missense variants, including 2 pathogenic BRCA1 and 1 TP53 deleterious variants. Finally, integrated analyses of germline and somatic variants identify significantly altered pathways, including the Fanconi, MAPK, and MLL pathways.


Nature Communications | 2015

Patterns and functional implications of rare germline variants across 12 cancer types

Charles Lu; Mingchao Xie; Michael C. Wendl; Jiayin Wang; Michael D. McLellan; Mark D. M. Leiserson; Kuan-lin Huang; Matthew A. Wyczalkowski; Reyka Jayasinghe; Tapahsama Banerjee; Jie Ning; Piyush Tripathi; Qunyuan Zhang; Beifang Niu; Kai Ye; Heather K. Schmidt; Robert S. Fulton; Joshua F. McMichael; Prag Batra; Cyriac Kandoth; Maheetha Bharadwaj; Daniel C. Koboldt; Christopher A. Miller; Krishna L. Kanchi; James M. Eldred; David E. Larson; John S. Welch; Ming You; Bradley A. Ozenberger; Ramaswamy Govindan

Large-scale cancer sequencing data enable discovery of rare germline cancer susceptibility variants. Here we systematically analyse 4,034 cases from The Cancer Genome Atlas cancer cases representing 12 cancer types. We find that the frequency of rare germline truncations in 114 cancer-susceptibility-associated genes varies widely, from 4% (acute myeloid leukaemia (AML)) to 19% (ovarian cancer), with a notably high frequency of 11% in stomach cancer. Burden testing identifies 13 cancer genes with significant enrichment of rare truncations, some associated with specific cancers (for example, RAD51C, PALB2 and MSH6 in AML, stomach and endometrial cancers, respectively). Significant, tumour-specific loss of heterozygosity occurs in nine genes (ATM, BAP1, BRCA1/2, BRIP1, FANCM, PALB2 and RAD51C/D). Moreover, our homology-directed repair assay of 68 BRCA1 rare missense variants supports the utility of allelic enrichment analysis for characterizing variants of unknown significance. The scale of this analysis and the somatic-germline integration enable the detection of rare variants that may affect individual susceptibility to tumour development, a critical step toward precision medicine.


Genome Biology | 2015

CoMEt: a statistical approach to identify combinations of mutually exclusive alterations in cancer

Mark D. M. Leiserson; Hsin-Ta Wu; Fabio Vandin; Benjamin J. Raphael

Cancer is a heterogeneous disease with different combinations of genetic alterations driving its development in different individuals. We introduce CoMEt, an algorithm to identify combinations of alterations that exhibit a pattern of mutual exclusivity across individuals, often observed for alterations in the same pathway. CoMEt includes an exact statistical test for mutual exclusivity and techniques to perform simultaneous analysis of multiple sets of mutually exclusive and subtype-specific alterations. We demonstrate that CoMEt outperforms existing approaches on simulated and real data. We apply CoMEt to five different cancer types, identifying both known cancer genes and pathways, and novel putative cancer genes.


Current Opinion in Genetics & Development | 2013

Network analysis of GWAS data

Mark D. M. Leiserson; Jonathan V Eldridge; Benjamin J. Raphael

Genome-wide association studies (GWAS) identify genetic variants that distinguish a control population from a population with a specific trait. Two challenges in GWAS are: (1) identification of the causal variant within a longer haplotype that is associated with the trait; (2) identification of causal variants for polygenic traits that are caused by variants in multiple genes within a pathway. We review recent methods that use information in protein-protein and protein-DNA interaction networks to address these two challenges.


Journal of Computational Biology | 2010

Evaluating Between-Pathway Models with Expression Data

Benjamin J. Hescott; Mark D. M. Leiserson; Lenore J. Cowen; Donna K. Slonim

Between-pathway models (BPMs) are network motifs consisting of pairs of putative redundant pathways. In this article, we show how adding another source of high-throughput data--microarray gene expression data from knockout experiments--allows us to identify a compensatory functional relationship between genes from the two BPM pathways. We evaluate the quality of the BPMs from four different studies, and we describe how our methods might be extended to refine pathways.


Bioinformatics | 2016

A weighted exact test for mutually exclusive mutations in cancer

Mark D. M. Leiserson; Matthew A. Reyna; Benjamin J. Raphael

MOTIVATION The somatic mutations in the pathways that drive cancer development tend to be mutually exclusive across tumors, providing a signal for distinguishing driver mutations from a larger number of random passenger mutations. This mutual exclusivity signal can be confounded by high and highly variable mutation rates across a cohort of samples. Current statistical tests for exclusivity that incorporate both per-gene and per-sample mutational frequencies are computationally expensive and have limited precision. RESULTS We formulate a weighted exact test for assessing the significance of mutual exclusivity in an arbitrary number of mutational events. Our test conditions on the number of samples with a mutation as well as per-event, per-sample mutation probabilities. We provide a recursive formula to compute P-values for the weighted test exactly as well as a highly accurate and efficient saddlepoint approximation of the test. We use our test to approximate a commonly used permutation test for exclusivity that conditions on per-event, per-sample mutation frequencies. However, our test is more efficient and it recovers more significant results than the permutation test. We use our Weighted Exclusivity Test (WExT) software to analyze hundreds of colorectal and endometrial samples from The Cancer Genome Atlas, which are two cancer types that often have extremely high mutation rates. On both cancer types, the weighted test identifies sets of mutually exclusive mutations in cancer genes with fewer false positives than earlier approaches. AVAILABILITY AND IMPLEMENTATION See http://compbio.cs.brown.edu/projects/wext for software. CONTACT [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.


Nature Methods | 2015

MAGI: visualization and collaborative annotation of genomic aberrations

Mark D. M. Leiserson; Connor Gramazio; Jason Hu; Hsin-Ta Wu; David H. Laidlaw; Benjamin J. Raphael

1Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany. 2Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA. 3Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA. 4Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA. e-mail: [email protected] or [email protected]

Collaboration


Dive into the Mark D. M. Leiserson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael D. McLellan

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Beifang Niu

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Charles Lu

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Christopher A. Miller

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Cyriac Kandoth

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge