Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin J. Sussman is active.

Publication


Featured researches published by Benjamin J. Sussman.


Science | 2011

Entangling macroscopic diamonds at room temperature.

K. C. Lee; Michael R. Sprague; Benjamin J. Sussman; Joshua Nunn; Nathan K. Langford; Xian-Min Jin; Tessa Champion; Patrick Michelberger; K. F. Reim; Duncan G. England; Dieter Jaksch; Ian A. Walmsley

Optical pulses are used to quantum mechanically entangle two diamonds several centimeters apart. Quantum entanglement in the motion of macroscopic solid bodies has implications both for quantum technologies and foundational studies of the boundary between the quantum and classical worlds. Entanglement is usually fragile in room-temperature solids, owing to strong interactions both internally and with the noisy environment. We generated motional entanglement between vibrational states of two spatially separated, millimeter-sized diamonds at room temperature. By measuring strong nonclassical correlations between Raman-scattered photons, we showed that the quantum state of the diamonds has positive concurrence with 98% probability. Our results show that entanglement can persist in the classical context of moving macroscopic solids in ambient conditions.


Journal of Chemical Physics | 2012

Time-resolved photoelectron imaging of excited state relaxation dynamics in phenol, catechol, resorcinol, and hydroquinone

Ruth Livingstone; James O. F. Thompson; Marija Iljina; Ross J Donaldson; Benjamin J. Sussman; Martin J. Paterson; David Townsend

Time-resolved photoelectron imaging was used to investigate the dynamical evolution of the initially prepared S(1) (ππ*) excited state of phenol (hydroxybenzene), catechol (1,2-dihydroxybenzene), resorcinol (1,3-dihydroxybenzene), and hydroquinone (1,4-dihydroxybenzene) following excitation at 267 nm. Our analysis was supported by ab initio calculations at the coupled-cluster and CASSCF levels of theory. In all cases, we observe rapid (<1 ps) intramolecular vibrational redistribution on the S(1) potential surface. In catechol, the overall S(1) state lifetime was observed to be 12.1 ps, which is 1-2 orders of magnitude shorter than in the other three molecules studied. This may be attributed to differences in the H atom tunnelling rate under the barrier formed by a conical intersection between the S(1) state and the close lying S(2) (πσ*) state, which is dissociative along the O-H stretching coordinate. Further evidence of this S(1)/S(2) interaction is also seen in the time-dependent anisotropy of the photoelectron angular distributions we have observed. Our data analysis was assisted by a matrix inversion method for processing photoelectron images that is significantly faster than most other previously reported approaches and is extremely quick and easy to implement.


Physical Review Letters | 2008

Multimode memories in atomic ensembles

Joshua Nunn; K. F. Reim; K. C. Lee; Virginia O. Lorenz; Benjamin J. Sussman; Ian A. Walmsley; Dieter Jaksch

The ability to store multiple optical modes in a quantum memory allows for increased efficiency of quantum communication and computation. Here we compute the multimode capacity of a variety of quantum memory protocols based on light storage in ensembles of atoms. We find that adding a controlled inhomogeneous broadening improves this capacity significantly.


Journal of Modern Optics | 2016

Quantum memories: emerging applications and recent advances

Khabat Heshami; Duncan G. England; Peter C. Humphreys; Philip J. Bustard; V. M. Acosta; Joshua Nunn; Benjamin J. Sussman

Quantum light–matter interfaces are at the heart of photonic quantum technologies. Quantum memories for photons, where non-classical states of photons are mapped onto stationary matter states and preserved for subsequent retrieval, are technical realizations enabled by exquisite control over interactions between light and matter. The ability of quantum memories to synchronize probabilistic events makes them a key component in quantum repeaters and quantum computation based on linear optics. This critical feature has motivated many groups to dedicate theoretical and experimental research to develop quantum memory devices. In recent years, exciting new applications, and more advanced developments of quantum memories, have proliferated. In this review, we outline some of the emerging applications of quantum memories in optical signal processing, quantum computation and non-linear optics. We review recent experimental and theoretical developments, and their impacts on more advanced photonic quantum technologies based on quantum memories.


Physical Review Letters | 2015

Storage and retrieval of THz-bandwidth single photons using a room-temperature diamond quantum memory.

Duncan G. England; Kent A. G. Fisher; Jean-Philippe W. MacLean; Philip J. Bustard; Rune Lausten; Kevin J. Resch; Benjamin J. Sussman

We report the storage and retrieval of single photons, via a quantum memory, in the optical phonons of a room-temperature bulk diamond. The THz-bandwidth heralded photons are generated by spontaneous parametric down-conversion and mapped to phonons via a Raman transition, stored for a variable delay, and released on demand. The second-order correlation of the memory output is g((2))(0)=0.65±0.07, demonstrating a preservation of nonclassical photon statistics throughout storage and retrieval. The memory is low noise, high speed and broadly tunable; it therefore promises to be a versatile light-matter interface for local quantum processing applications.


Physical Review Letters | 2013

Toward quantum processing in molecules: a THz-bandwidth coherent memory for light.

Philip J. Bustard; Rune Lausten; Duncan G. England; Benjamin J. Sussman

The unusual features of quantum mechanics are enabling the development of technologies not possible with classical physics. These devices utilize nonclassical phenomena in the states of atoms, ions, and solid-state media as the basis for many prototypes. Here we investigate molecular states as a distinct alternative. We demonstrate a memory for light based on storing photons in the vibrations of hydrogen molecules. The THz-bandwidth molecular memory is used to store 100-fs pulses for durations up to ~1 ns, enabling ~10(4) operational time bins. The results demonstrate the promise of molecules for constructing compact ultrafast quantum photonic technologies.


Optics Express | 2011

Quantum random bit generation using stimulated Raman scattering.

Philip J. Bustard; Doug Moffatt; Rune Lausten; Guorong Wu; Ian A. Walmsley; Benjamin J. Sussman

Random number sequences are a critical resource in a wide variety of information systems, including applications in cryptography, simulation, and data sampling. We introduce a quantum random number generator based on the phase measurement of Stokes light generated by amplification of zero-point vacuum fluctuations using stimulated Raman scattering. This is an example of quantum noise amplification using the most noise-free process possible: near unitary quantum evolution. The use of phase offers robustness to classical pump noise and the ability to generate multiple bits per measurement. The Stokes light is generated with high intensity and as a result, fast detectors with high signal-to-noise ratios can be used for measurement, eliminating the need for single-photon sensitive devices. The demonstrated implementation uses optical phonons in bulk diamond.


Nature Communications | 2016

Frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory.

Kent A. G. Fisher; Duncan G. England; Jean-Philippe W. MacLean; Philip J. Bustard; Kevin J. Resch; Benjamin J. Sussman

The spectral manipulation of photons is essential for linking components in a quantum network. Large frequency shifts are needed for conversion between optical and telecommunication frequencies, while smaller shifts are useful for frequency-multiplexing quantum systems, in the same way that wavelength division multiplexing is used in classical communications. Here we demonstrate frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory. Heralded 723.5 nm photons, with 4.1 nm bandwidth, are stored as optical phonons in the diamond via a Raman transition. Upon retrieval from the diamond memory, the spectral shape of the photons is determined by a tunable read pulse through the reverse Raman transition. We report central frequency tunability over 4.2 times the input bandwidth, and bandwidth modulation between 0.5 and 1.9 times the input bandwidth. Our results demonstrate the potential for diamond, and Raman memories in general, as an integrated platform for photon storage and spectral conversion.Kent A.G. Fisher,1 Duncan G. England,2 Jean-Philippe W. MacLean,1 Philip J. Bustard,2 Kevin J. Resch,1 and Benjamin J. Sussman2, 3 Institute for Quantum Computing and Department of Physics & Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada Physics Department, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario, K1N 6N5, Canada (Dated: September 21, 2015)


Physical Review A | 2008

Efficient spatially resolved multimode quantum memory

K. Surmacz; Joshua Nunn; K. F. Reim; K. C. Lee; Virginia O. Lorenz; Benjamin J. Sussman; I. A. Walmsley; Dieter Jaksch

Light storage in atomic ensembles has been implemented successfully, but the retrieval efficiency can be low. We propose to improve this efficiency with appropriately phase-matched backward propagating retrieval. This method allows for easy spatial filtering of the retrieved light; in addition, multiple optical modes can be stored in the transverse momentum of the ensemble. We model walk-off effects with a full numerical simulation, and confirm the applicability of the scheme.


Journal of Chemical Physics | 2008

Time- and frequency-resolved coherent anti-Stokes Raman scattering spectroscopy with sub-25 fs laser pulses

Rune Lausten; Olga Smirnova; Benjamin J. Sussman; Stefanie Gräfe; Anders S. Mouritzen; Albert Stolow

In general, many different diagrams can contribute to the signal measured in broadband four-wave mixing experiments. Care must therefore be taken when designing an experiment to be sensitive to only the desired diagram by taking advantage of phase matching, pulse timing, sequence, and the wavelengths employed. We use sub-25 fs pulses to create and monitor vibrational wavepackets in gaseous iodine, bromine, and iodine bromide through time- and frequency-resolved femtosecond coherent anti-Stokes Raman scattering (CARS) spectroscopy. We experimentally illustrate this using iodine, where the broad bandwidths of our pulses, and Boltzmann population in the lower three vibrational levels conspire to make a single diagram dominant in one spectral region of the signal spectrum. In another spectral region, however, the signal is the sum of two almost equally contributing diagrams, making it difficult to directly extract information about the molecular dynamics. We derive simple analytical expressions for the time- and frequency-resolved CARS signal to study the interplay of different diagrams. Expressions are given for all five diagrams which can contribute to the CARS signal in our case.

Collaboration


Dive into the Benjamin J. Sussman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rune Lausten

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Albert Stolow

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge