Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin J. Zwan is active.

Publication


Featured researches published by Benjamin J. Zwan.


Optics Express | 2013

Spatio-spectral analysis of supercontinuum generation in higher order electromagnetic modes of photonic crystal fiber

Benjamin J. Zwan; Samuel Legge; John Holdsworth; B.V. King

The far-field spatial distributions of higher order electro-magnetic mode supercontinua were resolved spectrally and recorded. The supercontinua were created by precise control and direction of input pump energy offset axially from the photonic crystal fiber core. By processing the measured spectra, the spatial mode shape at each wavelength was determined. Discrete spectral features are associated with symmetrical spatial patterns arising from the host fiber geometry and suggest the electromagnetic mode pairing between the longer wavelength solitons and associated visible dispersive waves. Clear differences between supercontinua generated in fundamental and higher order electromagnetic modes exist. These data should inform theoretical studies as the solitons and the dispersive wave generated by fission may be matched by spatial orientation of the electromagnetic mode that both occupy.


Journal of Applied Clinical Medical Physics | 2016

EPID‐based dosimetry to verify IMRT planar dose distribution for the aS1200 EPID and FFF beams

Narges Miri; Peter Keller; Benjamin J. Zwan; Peter B. Greer

We proposed to perform a basic dosimetry commissioning on a new imager system, the Varian aS1200 electronic portal imaging device (EPID) and TrueBeam 2.0 linear accelerator for flattened (FF) and flattening filter‐free (FFF) beams, then to develop an image‐based quality assurance (QA) model for verification of the system delivery accuracy for intensity‐modulated radiation therapy (IMRT) treatments. For dosimetry testing, linearity of dose response with MU, imager lag, and effectiveness of backscatter shielding were investigated. Then, an image‐based model was developed to convert images to planar dose onto a virtual water phantom. The model parameters were identified using energy fluence of the Acuros treatment planning system (TPS) and, reference dose profiles and output factors measured at depths of 5, 10, 15, and 20 cm in water phantom for square fields. To validate the model, its calculated dose was compared to measured dose from MapCHECK 2 diode arrays for 36 IMRT fields at 10 cm depth delivered with 6X, 6XFFF, 10X, and 10XFFF energies. An in‐house gamma function was used to compare planar doses pixel‐by‐pixel. Finally, the method was applied to the same IMRT fields to verify their pretreatment delivery dose compared with Eclipse TPS dose. For the EPID commissioning, dose linearity was within 0.4% above 5 MU and ∼1% above 2 MU, measured lag was smaller than the previous EPIDs, and profile symmetry was improved. The model was validated with mean gamma pass rates (standard deviation) of 99.0% (0.4%), 99.5% (0.6%), 99.3% (0.4%), and 98.0% (0.8%) at 3%/3 mm for respectively 6X, 6XFFF, 10X, and 10XFFF beams. Using the same comparison criteria, the beam deliveries were verified with mean pass rates of 100% (0.0%), 99.6% (0.3%), 99.9% (0.1%), and 98.7% (1.4%). Improvements were observed in dosimetric response of the aS1200 imager compared to previous EPID models, and the model was successfully developed for the new system and delivery energies of 6 and 10 MV, FF, and FFF modes. PACS number(s): 87.53.Oq, 87.53.XdWe proposed to perform a basic dosimetry commissioning on a new imager system, the Varian aS1200 electronic portal imaging device (EPID) and TrueBeam 2.0 linear accelerator for flattened (FF) and flattening filter-free (FFF) beams, then to develop an image-based quality assurance (QA) model for verification of the system delivery accuracy for intensity-modulated radiation therapy (IMRT) treatments. For dosimetry testing, linearity of dose response with MU, imager lag, and effectiveness of backscatter shielding were investigated. Then, an image-based model was developed to convert images to planar dose onto a virtual water phantom. The model parameters were identified using energy fluence of the Acuros treatment planning system (TPS) and, reference dose profiles and output factors measured at depths of 5, 10, 15, and 20 cm in water phantom for square fields. To validate the model, its calculated dose was compared to measured dose from MapCHECK 2 diode arrays for 36 IMRT fields at 10 cm depth delivered with 6X, 6XFFF, 10X, and 10XFFF energies. An in-house gamma function was used to compare planar doses pixel-by-pixel. Finally, the method was applied to the same IMRT fields to verify their pretreatment delivery dose compared with Eclipse TPS dose. For the EPID commissioning, dose linearity was within 0.4% above 5 MU and ∼1% above 2 MU, measured lag was smaller than the previous EPIDs, and profile symmetry was improved. The model was validated with mean gamma pass rates (standard deviation) of 99.0% (0.4%), 99.5% (0.6%), 99.3% (0.4%), and 98.0% (0.8%) at 3%/3 mm for respectively 6X, 6XFFF, 10X, and 10XFFF beams. Using the same comparison criteria, the beam deliveries were verified with mean pass rates of 100% (0.0%), 99.6% (0.3%), 99.9% (0.1%), and 98.7% (1.4%). Improvements were observed in dosimetric response of the aS1200 imager compared to previous EPID models, and the model was successfully developed for the new system and delivery energies of 6 and 10 MV, FF, and FFF modes. PACS number(s): 87.53.Oq, 87.53.Xd.


Journal of Applied Clinical Medical Physics | 2016

An EPID-based system for gantry-resolved MLC quality assurance for VMAT.

Benjamin J. Zwan; Michael P. Barnes; Todsaporn Fuangrod; Cameron J. Stanton; D.J. O'Connor; P Keall; Peter B. Greer

Multileaf collimator (MLC) positions should be precisely and independently measured as a function of gantry angle as part of a comprehensive quality assurance (QA) program for volumetric‐modulated arc therapy (VMAT). It is also ideal that such a QA program has the ability to relate MLC positional accuracy to patient‐specific dosimetry in order to determine the clinical significance of any detected MLC errors. In this work we propose a method to verify individual MLC trajectories during VMAT deliveries for use as a routine linear accelerator QA tool. We also extend this method to reconstruct the 3D patient dose in the treatment planning system based on the measured MLC trajectories and the original DICOM plan file. The method relies on extracting MLC positions from EPID images acquired at 8.41 fps during clinical VMAT deliveries. A gantry angle is automatically tagged to each image in order to obtain the MLC trajectories as a function of gantry angle. This analysis was performed for six clinical VMAT plans acquired at monthly intervals for three months. The measured trajectories for each delivery were compared to the MLC positions from the DICOM plan file. The maximum mean error detected was 0.07 mm and a maximum root‐mean‐square error was 0.8 mm for any leaf of any delivery. The sensitivity of this system was characterized by introducing random and systematic MLC errors into the test plans. It was demonstrated that the system is capable of detecting random and systematic errors on the range of 1–2 mm and single leaf calibration errors of 0.5 mm. The methodology developed in the work has potential to be used for efficient routine linear accelerator MLC QA and pretreatment patient‐specific QA and has the ability to relate measured MLC positional errors to 3D dosimetric errors within a patient volume. PACS number(s): 87.55.QrMultileaf collimator (MLC) positions should be precisely and independently measured as a function of gantry angle as part of a comprehensive quality assurance (QA) program for volumetric-modulated arc therapy (VMAT). It is also ideal that such a QA program has the ability to relate MLC positional accuracy to patient-specific dosimetry in order to determine the clinical significance of any detected MLC errors. In this work we propose a method to verify individual MLC trajectories during VMAT deliveries for use as a routine linear accelerator QA tool. We also extend this method to reconstruct the 3D patient dose in the treatment planning system based on the measured MLC trajectories and the original DICOM plan file. The method relies on extracting MLC positions from EPID images acquired at 8.41 fps during clinical VMAT deliveries. A gantry angle is automatically tagged to each image in order to obtain the MLC trajectories as a function of gantry angle. This analysis was performed for six clinical VMAT plans acquired at monthly intervals for three months. The measured trajectories for each delivery were compared to the MLC positions from the DICOM plan file. The maximum mean error detected was 0.07 mm and a maximum root-mean-square error was 0.8 mm for any leaf of any delivery. The sensitivity of this system was characterized by introducing random and systematic MLC errors into the test plans. It was demonstrated that the system is capable of detecting random and systematic errors on the range of 1-2 mm and single leaf calibration errors of 0.5 mm. The methodology developed in the work has potential to be used for efficient routine linear accelerator MLC QA and pretreatment patient-specific QA and has the ability to relate measured MLC positional errors to 3D dosimetric errors within a patient volume. PACS number(s): 87.55.Qr.


Medical Physics | 2014

Dose‐to‐water conversion for the backscatter‐shielded EPID: A frame‐based method to correct for EPID energy response to MLC transmitted radiation

Benjamin J. Zwan; Brian W. King; D.J. O'Connor; Peter B. Greer

PURPOSE To develop a frame-by-frame correction for the energy response of amorphous silicon electronic portal imaging devices (a-Si EPIDs) to radiation that has transmitted through the multileaf collimator (MLC) and to integrate this correction into the backscatter shielded EPID (BSS-EPID) dose-to-water conversion model. METHODS Individual EPID frames were acquired using a Varian frame grabber and iTools acquisition software then processed using in-house software developed inMATLAB. For each EPID image frame, the region below the MLC leaves was identified and all pixels in this region were multiplied by a factor of 1.3 to correct for the under-response of the imager to MLC transmitted radiation. The corrected frames were then summed to form a corrected integrated EPID image. This correction was implemented as an initial step in the BSS-EPID dose-to-water conversion model which was then used to compute dose planes in a water phantom for 35 IMRT fields. The calculated dose planes, with and without the proposed MLC transmission correction, were compared to measurements in solid water using a two-dimensional diode array. RESULTS It was observed that the integration of the MLC transmission correction into the BSS-EPID dose model improved agreement between modeled and measured dose planes. In particular, the MLC correction produced higher pass rates for almost all Head and Neck fields tested, yielding an average pass rate of 99.8% for 2%/2 mm criteria. A two-sample independent t-test and fisher F-test were used to show that the MLC transmission correction resulted in a statistically significant reduction in the mean and the standard deviation of the gamma values, respectively, to give a more accurate and consistent dose-to-water conversion. CONCLUSIONS The frame-by-frame MLC transmission response correction was shown to improve the accuracy and reduce the variability of the BSS-EPID dose-to-water conversion model. The correction may be applied as a preprocessing step in any pretreatment portal dosimetry calculation and has been shown to be beneficial for highly modulated IMRT fields.


Medical Physics | 2017

Commissioning and quality assurance for VMAT delivery systems: An efficient time‐resolved system using real‐time EPID imaging

Benjamin J. Zwan; Michael P. Barnes; Jonathan Hindmarsh; Seng B. Lim; D Lovelock; Todsaporn Fuangrod; D.J. O'Connor; P Keall; Peter B. Greer

Purpose: An ideal commissioning and quality assurance (QA) program for Volumetric Modulated Arc Therapy (VMAT) delivery systems should assess the performance of each individual dynamic component as a function of gantry angle. Procedures within such a program should also be time‐efficient, independent of the delivery system and be sensitive to all types of errors. The purpose of this work is to develop a system for automated time‐resolved commissioning and QA of VMAT control systems which meets these criteria. Methods: The procedures developed within this work rely solely on images obtained, using an electronic portal imaging device (EPID) without the presence of a phantom. During the delivery of specially designed VMAT test plans, EPID frames were acquired at 9.5 Hz, using a frame grabber. The set of test plans was developed to individually assess the performance of the dose delivery and multileaf collimator (MLC) control systems under varying levels of delivery complexities. An in‐house software tool was developed to automatically extract features from the EPID images and evaluate the following characteristics as a function of gantry angle: dose delivery accuracy, dose rate constancy, beam profile constancy, gantry speed constancy, dynamic MLC positioning accuracy, MLC speed and acceleration constancy, and synchronization between gantry angle, MLC positioning and dose rate. Machine log files were also acquired during each delivery and subsequently compared to information extracted from EPID image frames. Results: The largest difference between measured and planned dose at any gantry angle was 0.8% which correlated with rapid changes in dose rate and gantry speed. For all other test plans, the dose delivered was within 0.25% of the planned dose for all gantry angles. Profile constancy was not found to vary with gantry angle for tests where gantry speed and dose rate were constant, however, for tests with varying dose rate and gantry speed, segments with lower dose rate and higher gantry speed exhibited less profile stability. MLC positional accuracy was not observed to be dependent on the degree of interdigitation. MLC speed was measured for each individual leaf and slower leaf speeds were shown to be compensated for by lower dose rates. The test procedures were found to be sensitive to 1 mm systematic MLC errors, 1 mm random MLC errors, 0.4 mm MLC gap errors and synchronization errors between the MLC, dose rate and gantry angle controls systems of 1° In general, parameters measured by both EPID and log files agreed with the plan, however, a greater average departure from the plan was evidenced by the EPID measurements. Conclusion: QA test plans and analysis methods have been developed to assess the performance of each dynamic component of VMAT deliveries individually and as a function of gantry angle. This methodology relies solely on time‐resolved EPID imaging without the presence of a phantom and has been shown to be sensitive to a range of delivery errors. The procedures developed in this work are both comprehensive and time‐efficient and can be used for streamlined commissioning and QA of VMAT delivery systems.


Journal of Applied Clinical Medical Physics | 2016

The dosimetric impact of control point spacing for sliding gap MLC fields

Benjamin J. Zwan; Jonathan Hindmarsh; Erin Seymour; Kankean Kandasamy; Kirbie Sloan; Rajesakar David; Christopher Lee

Dynamic sliding gap multileaf collimator (MLC) fields are used to model MLC properties within the treatment planning system (TPS) for dynamic treatments. One of the key MLC properties in the Eclipse TPS is the dosimetric leaf gap (DLG) and precise determination of this parameter is paramount to ensuring accurate dose delivery. In this investigation, we report on how the spacing between control points (CPs) for sliding gap fields impacts the dose delivery, MLC positioning accuracy, and measurement of the DLG. The central axis dose was measured for sliding gap MLC fields with gap widths ranging from 2 to 40 mm. It was found that for deliveries containing two CPs, the central axis dose was underestimated by the TPS for all gap widths, with the maximum difference being 8% for a 2 mm gap field. For the same sliding gap fields containing 50 CPs, the measured dose was always within ±2% of the TPS dose. By directly measuring the MLC trajectories we show that this dose difference is due to a systematic MLC gap error for fields containing two CPs, and that the cause of this error is due to the leaf position offset table which is incorrectly applied when the spacing between CPs is too large. This MLC gap error resulted in an increase in the measured DLG of 0.5 mm for both 6 MV and 10 MV, when using fields with 2 CPs compared to 50 CPs. Furthermore, this change in DLG was shown to decrease the mean TPS-calculated dose to the target volume by 2.6% for a clinical IMRT test plan. This work has shown that systematic MLC positioning errors occur for sliding gap MLC fields containing two CPs and that using these fields to model critical TPS parameters, such as the DLG, may result in clinically significant systematic dose calculation errors during subsequent dynamic MLC treatments. PACS number(s): 87.56.nk.Dynamic sliding gap multileaf collimator (MLC) fields are used to model MLC properties within the treatment planning system (TPS) for dynamic treatments. One of the key MLC properties in the Eclipse TPS is the dosimetric leaf gap (DLG) and precise determination of this parameter is paramount to ensuring accurate dose delivery. In this investigation, we report on how the spacing between control points (CPs) for sliding gap fields impacts the dose delivery, MLC positioning accuracy, and measurement of the DLG. The central axis dose was measured for sliding gap MLC fields with gap widths ranging from 2 to 40 mm. It was found that for deliveries containing two CPs, the central axis dose was underestimated by the TPS for all gap widths, with the maximum difference being 8% for a 2 mm gap field. For the same sliding gap fields containing 50 CPs, the measured dose was always within ±2% of the TPS dose. By directly measuring the MLC trajectories we show that this dose difference is due to a systematic MLC gap error for fields containing two CPs, and that the cause of this error is due to the leaf position offset table which is incorrectly applied when the spacing between CPs is too large. This MLC gap error resulted in an increase in the measured DLG of 0.5 mm for both 6 MV and 10 MV, when using fields with 2 CPs compared to 50 CPs. Furthermore, this change in DLG was shown to decrease the mean TPS‐calculated dose to the target volume by 2.6% for a clinical IMRT test plan. This work has shown that systematic MLC positioning errors occur for sliding gap MLC fields containing two CPs and that using these fields to model critical TPS parameters, such as the DLG, may result in clinically significant systematic dose calculation errors during subsequent dynamic MLC treatments. PACS number(s): 87.56.nk


The International Commission for Optics | 2011

Supercontinuum generation in higher order modes of photonic crystal fibre

Samuel Legge; John Holdsworth; Benjamin J. Zwan

Soliton behaviour in higher order electromagnetic (EM) modes in commercial highly nonlinear photonic crystal fibre (PCF) was investigated by mapping spatial and spectral emission. A femtosecond mode-locked Titanium:Sapphire laser was used to generate supercontinua within a set of higher-order electromagnetic modes by piezoelectric control of the spatial field input to the PCF. Coupling pump wavelengths within the normal dispersion regime for the fundamental EM mode into higher EM modes resulted in the emission of blue light, characteristic of higher order soliton fission, in higher order EM modes. Detailed spectral measurements across the spatial mode field output from the PCF, showed different spectral components of the generated continua occupying different spatial electromagnetic modes. In particular, the blue emission was found to be structured with spectral wavelengths at 440 nm and 450 nm associated with different spatial EM modes. These new measurements are the first to detail high order solitonic interactions in higher order electromagnetic modes and to record different spectral emission wavelengths associated with different higher order spatial modes. These results are not well matched to current theoretical models for supercontinuum generation developed for the fundamental EM mode. The lower zero dispersion wavelengths associated with higher EM modes in PCF enable previously undetected engagement of these modes in supercontinuum generation and propagation.


Journal of Applied Clinical Medical Physics | 2017

A novel and independent method for time-resolved gantry angle quality assurance for VMAT

Todsaporn Fuangrod; Peter B. Greer; Benjamin J. Zwan; Michael P. Barnes; Joerg Lehmann

Abstract Volumetric‐modulated arc therapy (VMAT) treatment delivery requires three key dynamic components; gantry rotation, dose rate modulation, and multi‐leaf collimator motion, which are all simultaneously varied during the delivery. Misalignment of the gantry angle can potentially affect clinical outcome due to the steep dose gradients and complex MLC shapes involved. It is essential to develop independent gantry angle quality assurance (QA) appropriate to VMAT that can be performed simultaneously with other key VMAT QA testing. In this work, a simple and inexpensive fully independent gantry angle measurement methodology was developed that allows quantitation of the gantry angle accuracy as a function of time. This method is based on the analysis of video footage of a “Double dot” pattern attached to the front cover of the linear accelerator that consists of red and green circles printed on A4 paper sheet. A standard mobile phone is placed on the couch to record the video footage during gantry rotation. The video file is subsequently analyzed and used to determine the gantry angle from each video frame using the relative position of the two dots. There were two types of validation tests performed including the static mode with manual gantry angle rotation and dynamic mode with three complex test plans. The accuracy was 0.26° ± 0.04° and 0.46° ± 0.31° (mean ± 1 SD) for the static and dynamic modes, respectively. This method is user friendly, cost effective, easy to setup, has high temporal resolution, and can be combined with existing time‐resolved method for QA of MLC and dose rate to form a comprehensive set of procedures for time‐resolved QA of VMAT delivery system.


Medical Physics | 2016

MO-FG-202-04: Gantry-Resolved Linac QA for VMAT: A Comprehensive and Efficient System Using An Electronic Portal Imaging Device

Benjamin J. Zwan; Michael P. Barnes; Jonathan Hindmarsh; E Seymour; D.J. O'Connor; P Keall; Peter B. Greer

PURPOSE To automate gantry-resolved linear accelerator (linac) quality assurance (QA) for volumetric modulated arc therapy (VMAT) using an electronic portal imaging device (EPID). METHODS A QA system for VMAT was developed that uses an EPID, frame-grabber assembly and in-house developed image processing software. The system relies solely on the analysis of EPID image frames acquired without the presence of a phantom. Images were acquired at 8.41 frames per second using a frame grabber and ancillary acquisition computer. Each image frame was tagged with a gantry angle from the linacs on-board gantry angle encoder. Arc-dynamic QA plans were designed to assess the performance of each individual linac component during VMAT. By analysing each image frame acquired during the QA deliveries the following eight machine performance characteristics were measured as a function of gantry angle: MLC positional accuracy, MLC speed constancy, MLC acceleration constancy, MLC-gantry synchronisation, beam profile constancy, dose rate constancy, gantry speed constancy, dose-gantry angle synchronisation and mechanical sag. All tests were performed on a Varian iX linear accelerator equipped with a 120 leaf Millennium MLC and an aS1000 EPID (Varian Medical Systems, Palo Alto, CA, USA). RESULTS Machine performance parameters were measured as a function of gantry angle using EPID imaging and compared to machine log files and the treatment plan. Data acquisition is currently underway at 3 centres, incorporating 7 treatment units, at 2 weekly measurement intervals. CONCLUSION The proposed system can be applied for streamlined linac QA and commissioning for VMAT. The set of test plans developed can be used to assess the performance of each individual components of the treatment machine during VMAT deliveries as a function of gantry angle. The methodology does not require the setup of any additional phantom or measurement equipment and the analysis is fully automated to allow for regular routine testing.


Medical Physics | 2016

TH-AB-202-02: Real-Time Verification and Error Detection for MLC Tracking Deliveries Using An Electronic Portal Imaging Device

Benjamin J. Zwan; Emma Colvill; Jeremy T. Booth; D.J. O'Connor; P Keall; Peter B. Greer

PURPOSE The added complexity of the real-time adaptive multi-leaf collimator (MLC) tracking increases the likelihood of undetected MLC delivery errors. In this work we develop and test a system for real-time delivery verification and error detection for MLC tracking radiotherapy using an electronic portal imaging device (EPID). METHODS The delivery verification system relies on acquisition and real-time analysis of transit EPID image frames acquired at 8.41 fps. In-house software was developed to extract the MLC positions from each image frame. Three comparison metrics were used to verify the MLC positions in real-time: (1) field size, (2) field location and, (3) field shape. The delivery verification system was tested for 8 VMAT MLC tracking deliveries (4 prostate and 4 lung) where real patient target motion was reproduced using a Hexamotion motion stage and a Calypso system. Sensitivity and detection delay was quantified for various types of MLC and system errors. RESULTS For both the prostate and lung test deliveries the MLC-defined field size was measured with an accuracy of 1.25 cm2 (1 SD). The field location was measured with an accuracy of 0.6 mm and 0.8 mm (1 SD) for lung and prostate respectively. Field location errors (i.e. tracking in wrong direction) with a magnitude of 3 mm were detected within 0.4 s of occurrence in the X direction and 0.8 s in the Y direction. Systematic MLC gap errors were detected as small as 3 mm. The method was not found to be sensitive to random MLC errors and individual MLC calibration errors up to 5 mm. CONCLUSION EPID imaging may be used for independent real-time verification of MLC trajectories during MLC tracking deliveries. Thresholds have been determined for error detection and the system has been shown to be sensitive to a range of delivery errors.

Collaboration


Dive into the Benjamin J. Zwan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P Keall

University of Sydney

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Narges Miri

University of Newcastle

View shared research outputs
Top Co-Authors

Avatar

Samuel Legge

University of Newcastle

View shared research outputs
Researchain Logo
Decentralizing Knowledge