Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin L. Woolbright is active.

Publication


Featured researches published by Benjamin L. Woolbright.


Transplantation Reviews | 2012

Current strategies to minimize hepatic ischemia-reperfusion injury by targeting reactive oxygen species.

Hartmut Jaeschke; Benjamin L. Woolbright

Ischemia-reperfusion is a major component of injury in vascular occlusion both during liver surgery and during liver transplantation. The pathophysiology of hepatic ischemia-reperfusion includes a number of mechanisms including oxidant stress that contribute to various degrees to the overall organ damage. A large volume of recent research has focused on the use of antioxidants to ameliorate this injury, although results in experimental models have not translated well to the clinic. This review focuses on critical sources and mediators of oxidative stress during hepatic ischemia-reperfusion, the status of current antioxidant interventions, and emerging mechanisms of protection by preconditioning. While recent advances in regulation of antioxidant systems by Nrf2 provide interesting new potential therapeutic targets, an increased focus must be placed on more in-depth mechanistic investigations in hepatic ischemia-reperfusion injury and translational research in order to refine current strategies in disease management.


World Journal of Gastroenterology | 2012

Novel insight into mechanisms of cholestatic liver injury

Benjamin L. Woolbright; Hartmut Jaeschke

Cholestasis results in a buildup of bile acids in serum and in hepatocytes. Early studies into the mechanisms of cholestatic liver injury strongly implicated bile acid-induced apoptosis as the major cause of hepatocellular injury. Recent work has focused both on the role of bile acids in cell signaling as well as the role of sterile inflammation in the pathophysiology. Advances in modern analytical methodology have allowed for more accurate measuring of bile acid concentrations in serum, liver, and bile to very low levels of detection. Interestingly, toxic bile acid levels are seemingly far lower than previously hypothesized. The initial hypothesis has been based largely upon the exposure of μmol/L concentrations of toxic bile acids and bile salts to primary hepatocytes in cell culture, the possibility that in vivo bile acid concentrations may be far lower than the observed in vitro toxicity has far reaching implications in the mechanism of injury. This review will focus on both how different bile acids and different bile acid concentrations can affect hepatocytes during cholestasis, and additionally provide insight into how these data support recent hypotheses that cholestatic liver injury may not occur through direct bile acid-induced apoptosis, but may involve largely inflammatory cell-mediated liver cell necrosis.


Toxicology and Applied Pharmacology | 2015

Bile acid-induced necrosis in primary human hepatocytes and in patients with obstructive cholestasis.

Benjamin L. Woolbright; Kenneth Dorko; Daniel J. Antoine; Joanna I. Clarke; Parviz Gholami; Feng Li; Sean C. Kumer; Timothy Schmitt; Jameson Forster; Fang Fan; Rosalind E. Jenkins; B. Kevin Park; Bruno Hagenbuch; Mojtaba Olyaee; Hartmut Jaeschke

Accumulation of bile acids is a major mediator of cholestatic liver injury. Recent studies indicate bile acid composition between humans and rodents is dramatically different, as humans have a higher percent of glycine conjugated bile acids and increased chenodeoxycholate content, which increases the hydrophobicity index of bile acids. This increase may lead to direct toxicity that kills hepatocytes, and promotes inflammation. To address this issue, this study assessed how pathophysiological concentrations of bile acids measured in cholestatic patients affected primary human hepatocytes. Individual bile acid levels were determined in serum and bile by UPLC/QTOFMS in patients with extrahepatic cholestasis with, or without, concurrent increases in serum transaminases. Bile acid levels increased in serum of patients with liver injury, while biliary levels decreased, implicating infarction of the biliary tracts. To assess bile acid-induced toxicity in man, primary human hepatocytes were treated with relevant concentrations, derived from patient data, of the model bile acid glycochenodeoxycholic acid (GCDC). Treatment with GCDC resulted in necrosis with no increase in apoptotic parameters. This was recapitulated by treatment with biliary bile acid concentrations, but not serum concentrations. Marked elevations in serum full-length cytokeratin-18, high mobility group box 1 protein (HMGB1), and acetylated HMGB1 confirmed inflammatory necrosis in injured patients; only modest elevations in caspase-cleaved cytokeratin-18 were observed. These data suggest human hepatocytes are more resistant to human-relevant bile acids than rodent hepatocytes, and die through necrosis when exposed to bile acids. These mechanisms of cholestasis in humans are fundamentally different to mechanisms observed in rodent models.


Journal of Hepatology | 2014

Nrf2 promotes the development of fibrosis and tumorigenesis in mice with defective hepatic autophagy

Hong-Min Ni; Benjamin L. Woolbright; Jessica A. Williams; Bryan L. Copple; Wei Cui; James P. Luyendyk; Hartmut Jaeschke; Wen-Xing Ding

BACKGROUND & AIMS Autophagy is an intracellular lysosomal degradation process that plays an important role in regulating normal physiological functions of the liver. The purpose of the present study was to investigate the mechanism(s) by which the loss of hepatic autophagy leads to liver inflammation, fibrosis and tumorigenesis. METHODS Hepatocyte-specific Atg5 knockout mice were generated by crossing Atg5 Flox/Flox mice with albumin Cre mice. These mice were also crossed with Nrf2 knockout mice to generate Atg5 Flox/Flox, Albumin Cre(+)/Nrf2(-/-) double knockout mice. These mice were housed for various time points up to 15 months, and blood and liver tissues were harvested for biochemical and histological analysis. RESULTS Hepatocyte-specific deletion of Atg5 resulted in increased apoptosis, inflammation and fibrosis in the liver. Increased apoptosis in hepatocyte-specific Atg5 knockout mice was likely due to accumulation of aberrant polyubiquitinated proteins (proteotoxicity) and disruption of the homeostasis of pro-and anti-apoptotic proteins. All of these pathological changes started as early as one month and persisted for 12-15 months. At 9-15 months of age, these mice also developed hepatocellular adenomas. Interestingly, deletion of Nrf2 in Atg5 liver-specific knockout mice markedly abolished these pathological changes, indicating a key role for this transcription factor in the mechanism of hepatic pathology. CONCLUSIONS Our results provide genetic evidence that loss of autophagy in hepatocytes causes cell death resulting in liver inflammation, fibrosis and tumorigenesis. We also demonstrate that persistent activation of Nrf2 is critical for liver inflammation, fibrosis and eventual tumorigenesis that occur in mice with defects in hepatocyte autophagy.


Toxicology and Applied Pharmacology | 2013

Plasma biomarkers of liver injury and inflammation demonstrate a lack of apoptosis during obstructive cholestasis in mice

Benjamin L. Woolbright; Daniel J. Antoine; Rosalind E. Jenkins; Mary Lynn Bajt; B. Kevin Park; Hartmut Jaeschke

Cholestasis is a pathological common component of numerous liver diseases that results in hepatotoxicity, inflammation, and cirrhosis when untreated. While the predominant hypothesis in cholestatic liver injury remains hepatocyte apoptosis due to direct toxicity of hydrophobic bile acid exposure, recent work suggests that the injury occurs through inflammatory necrosis. In order to resolve this controversy, we used novel plasma biomarkers to assess the mechanisms of cell death during early cholestatic liver injury. C57Bl/6 mice underwent bile duct ligation (BDL) for 6-72 h, or sham operation. Another group of mice were given d-galactosamine and endotoxin as a positive control for apoptosis and inflammatory necrosis. Plasma levels of full length cytokeratin-18 (FL-K18), microRNA-122 (miR-122) and high mobility group box-1 protein (HMGB1) increased progressively after BDL with peak levels observed after 48 h. These results indicate extensive cell necrosis after BDL, which is supported by the time course of plasma alanine aminotransferase activities and histology. In contrast, plasma caspase-3 activity, cleaved caspase-3 protein and caspase-cleaved cytokeratin-18 fragments (cK18) were not elevated at any time during BDL suggesting the absence of apoptosis. In contrast, all plasma biomarkers of necrosis and apoptosis were elevated 6 h after Gal/End treatment. In addition, acetylated HMGB1, a marker for macrophage and monocyte activation, was increased as early as 12 h but mainly at 48-72 h. However, progressive neutrophil accumulation in the area of necrosis started at 6h after BDL. In conclusion, these data indicate that early cholestatic liver injury in mice is an inflammatory event, and occurs through necrosis with little evidence for apoptosis.


Journal of Hepatology | 2017

Role of the inflammasome in acetaminophen-induced liver injury and acute liver failure

Benjamin L. Woolbright; Hartmut Jaeschke

Drug-induced acute liver failure carries a high morbidity and mortality rate. Acetaminophen overdose is the number one cause of acute liver failure and remains a major problem in Western medicine. Administration of N-acetyl cysteine is an effective antidote when given before the initial rise in toxicity; however, many patients present to the hospital after this stage occurs. As such, treatments which can alleviate late-stage acetaminophen-induced acute liver failure are imperative. While the initial mechanisms of toxicity are well described, a debate has recently occurred in the literature over whether there is a second phase of injury, mediated by inflammatory processes. Critical to this potential inflammatory process is the activation of caspase-1 and interleukin-1β by a molecular complex known as the inflammasome. Several different stimuli for the formation of multiple different inflammasome complexes have been identified. Formation of the NACHT, leucine-rich repeat (LRR) and pyrin (PYD) domains-containing protein 3 (Nalp3) inflammasome in particular, has directly been attributed to late-stage acetaminophen toxicity. In this review, we will discuss the mechanisms of acetaminophen-induced liver injury in mice and man with a particular focus on the role of inflammation and the inflammasome.


Toxicology Letters | 2014

Osteopontin is an initial mediator of inflammation and liver injury during obstructive cholestasis after bile duct ligation in mice

Min Yang; Hui Min Yan; Benjamin L. Woolbright; Bryan L. Copple; Peter Fickert; Michael Trauner; Hartmut Jaeschke

Osteopontin (OPN) is a chemotactic factor which can be cleaved to the pro-inflammatory form by matrix metalloproteinases (MMPs). To test the hypothesis that OPN can modulate inflammatory liver injury during cholestasis, wild-type (WT) C57BL/6 and OPN knockout (OPN-KO) mice underwent bile duct ligation (BDL). OPN-KO mice showed significant reduction in liver injury (plasma ALT and necrosis) and neutrophil recruitment compared with WT animals at 24h but not 72h after BDL. In WT mice, a 4-fold increase in hepatic MMP-3 mRNA and elevated MMP activities and cleaved OPN levels were observed in bile. WT mice subjected to BDL in the presence of the MMP inhibitor BB-94 showed reduced liver injury, less neutrophil extravasation and diminished levels of cleaved OPN in bile. Thus, during obstructive cholestasis, OPN released from biliary epithelial cells could be cleaved by MMPs in bile. When the biliary system leaks, cleaved OPN enters the parenchyma and attracts neutrophils. In the absence of OPN, other chemoattractants, e.g. chemokines, mediate a delayed inflammatory response and injury. Taken together, our data suggest that OPN is the pro-inflammatory mediator that initiates the early neutrophil-mediated injury phase during obstructive cholestasis in mice.


Toxicology Letters | 2014

Lithocholic acid feeding results in direct hepato-toxicity independent of neutrophil function in mice

Benjamin L. Woolbright; Feng Li; Yuchao Xie; Anwar Farhood; Peter Fickert; Michael Trauner; Hartmut Jaeschke

Lithocholic acid (LCA) supplementation in the diet results in intrahepatic cholestasis and bile infarcts. Previously we showed that an innate immune response is critical for cholestatic liver injury in the bile duct ligated mice. Thus, the purpose of this study was to investigate the role of neutrophils in the mechanism of liver injury caused by feeding mice a diet containing LCA. C57BL/6 mice were given control or 1% LCA containing diet for 24-96 h and then examined for parameters of hepatotoxicity. Plasma ALT levels were significantly increased by 48 h after LCA feeding, which correlated with both neutrophil recruitment to the liver and upregulation of numerous pro-inflammatory genes. The injury was confirmed by histology. Deficiency in intercellular adhesion molecule-1 (ICAM-1) expression or inhibition of neutrophil function failed to protect against the injury. Bile acid levels were quantified in plasma and bile of LCA-fed mice after 48 and 96 h. Only the observed biliary levels of taurochenodeoxycholic acid and potentially tauro-LCA caused direct cytotoxicity in mouse hepatocytes. These data support the conclusion that neutrophil recruitment occurs after the onset of bile acid-induced necrosis in LCA-fed animals, and is not a primary mechanism of cell death when cholestasis occurs through accumulation of hydrophobic bile acids.


Basic & Clinical Pharmacology & Toxicology | 2016

Bile Acid-Induced Toxicity in HepaRG Cells Recapitulates the Response in Primary Human Hepatocytes

Benjamin L. Woolbright; Mitchell R. McGill; Hui-Min Yan; Hartmut Jaeschke

Cholestatic liver injury is a pathological component of numerous disease states. Much of the current literature on cholestatic liver injury is derived from in vitro studies using rodent hepatocytes or cell lines transfected with bile acid (BA) uptake transporters. While these studies demonstrate BA‐driven apoptosis, it is debatable whether these models reflect the human pathophysiology, as primary human hepatocytes undergo primarily necrosis. HepaRG cells are a bipotential, human hepatoma line that express apical and basolateral BA transporters. Thus, we sought to determine whether HepaRG cells could replicate the response of primary human hepatocytes to BA exposure in vitro. HepG2 cells, primary murine hepatocytes (PMH) or HepaRG cells, were exposed to taurocholic acid (TCA), or glycochenodeoxycholate (GCDC) and lactate dehydrogenase release were measured to determine cell death. Cell death occurred dose‐responsively in HepaRG cells when exposed to GCDC; however, HepG2 cells died acutely only at very high concentrations of GCDC. In HepaRG cells, pre‐treatment with the caspase inhibitor z‐VD‐FMK had no effect on cell death, indicating a lack of apoptotic cell death, and while c‐jun N‐terminal kinase (JNK) protein was activated by GCDC treatment in HepaRG cells, the inhibition of JNK did not protect. Although previous data indicate that TCA stimulates pro‐inflammatory gene induction in PMH, there was no change in gene expression after TCA stimulation in HepaRG cells, which mimicked previous data found in primary human hepatocytes. These data provide evidence for HepaRG cells as a new model for the study of the effect of BA on human hepatocytes.


Basic & Clinical Pharmacology & Toxicology | 2012

LYSOSOMAL INSTABILITY AND CATHEPSIN B RELEASE DURING ACETAMINOPHEN HEPATOTOXICITY

Benjamin L. Woolbright; Mitchell R. McGill; Hui-Min Yan; Mary Lynn Bajt; Matthew R. Sharpe; John J. Lemasters; Hartmut Jaeschke

Acetaminophen (APAP) overdose is currently the most frequent cause of drug‐induced liver failure in the United States. Recently, it was shown that lysosomal iron translocates to mitochondria where it contributes to the collapse of the mitochondrial membrane potential. Therefore, the purpose of this study was to investigate whether cathepsin B, a lysosomal protease, is involved in APAP‐induced hepatotoxicity. Cathepsin B activity was measured in subcellular liver fractions of C57Bl/6 mice 3 hr after 300 mg/kg APAP treatment. There was a significant increase in cytoplasmic cathepsin activity, concurrent with a decrease in microsomal activity, indicative of lysosomal cathepsin B release. To investigate the effect of cathepsin B on hepatotoxicity, the cathepsin inhibitor AC‐LVK‐CHO was given 1 hr prior to 300 mg/kg APAP treatment along with vehicle control. There was no difference between groups in serum alanine aminotransferase (ALT) values, or by histological evaluation of necrosis, although cathepsin B activity was inhibited by 70–80% compared with controls. These findings were confirmed with a different inhibitor (z‐FA‐fmk) in vivo and in vitro. Hepatocytes were exposed to 5 mM acetaminophen. Lysotracker staining confirmed lysosomal instability and cathepsin B release, but there was no reduction in cell death after treatment with cathepsin B inhibitors. Finally, cathepsin B release was measured in clinical samples from patients with APAP‐induced liver injury. Low levels of cathepsin B were released into plasma from overdose patients. APAP overdose causes lysosomal instability and release of cathepsin B into the cytosol but does not contribute to liver injury under these conditions.

Collaboration


Dive into the Benjamin L. Woolbright's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kuo Du

University of Kansas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dharamainder Choudhary

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Feng Li

University of Kansas

View shared research outputs
Researchain Logo
Decentralizing Knowledge