Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin M. Grupe is active.

Publication


Featured researches published by Benjamin M. Grupe.


PLOS ONE | 2015

Biodiversity on the Rocks: Macrofauna Inhabiting Authigenic Carbonate at Costa Rica Methane Seeps

Lisa A. Levin; Guillermo F. Mendoza; Benjamin M. Grupe; Jennifer P. Gonzalez; Brittany Jellison; Greg W. Rouse; Andrew R. Thurber; Anders Warén

Carbonate communities: The activity of anaerobic methane oxidizing microbes facilitates precipitation of vast quantities of authigenic carbonate at methane seeps. Here we demonstrate the significant role of carbonate rocks in promoting diversity by providing unique habitat and food resources for macrofaunal assemblages at seeps on the Costa Rica margin (400–1850 m). The attendant fauna is surprisingly similar to that in rocky intertidal shores, with numerous grazing gastropods (limpets and snails) as dominant taxa. However, the community feeds upon seep-associated microbes. Macrofaunal density, composition, and diversity on carbonates vary as a function of seepage activity, biogenic habitat and location. The macrofaunal community of carbonates at non-seeping (inactive) sites is strongly related to the hydrography (depth, temperature, O2) of overlying water, whereas the fauna at sites of active seepage is not. Densities are highest on active rocks from tubeworm bushes and mussel beds, particularly at the Mound 12 location (1000 m). Species diversity is higher on rocks exposed to active seepage, with multiple species of gastropods and polychaetes dominant, while crustaceans, cnidarians, and ophiuroids were better represented on rocks at inactive sites. Macro-infauna (larger than 0.3 mm) from tube cores taken in nearby seep sediments at comparable depths exhibited densities similar to those on carbonate rocks, but had lower diversity and different taxonomic composition. Seep sediments had higher densities of ampharetid, dorvilleid, hesionid, cirratulid and lacydoniid polychaetes, whereas carbonates had more gastropods, as well as syllid, chrysopetalid and polynoid polychaetes. Stable isotope signatures and metrics: The stable isotope signatures of carbonates were heterogeneous, as were the food sources and nutrition used by the animals. Carbonate δ13Cinorg values (mean = -26.98‰) ranged from -53.3‰ to +10.0‰, and were significantly heavier than carbonate δ13Corg (mean = -33.83‰), which ranged from -74.4‰ to -20.6‰. Invertebrates on carbonates had average δ13C (per rock) = -31.0‰ (range -18.5‰ to -46.5‰) and δ15N = 5.7‰ (range -4.5‰ to +13.4‰). Average δ13C values did not differ between active and inactive sites; carbonate fauna from both settings depend on chemosynthesis-based nutrition. Community metrics reflecting trophic diversity (SEAc, total Hull Area, ranges of δ13C and δ15N) and species packing (mean distance to centroid, nearest neighbor distance) also did not vary as a function of seepage activity or site. However, distinct isotopic signatures were observed among related, co-occurring species of gastropods and polychaetes, reflecting intense microbial resource partitioning. Overall, the substrate and nutritional heterogeneity introduced by authigenic seep carbonates act to promote diverse, uniquely adapted assemblages, even after seepage ceases. The macrofauna in these ecosystems remain largely overlooked in most surveys, but are major contributors to biodiversity of chemosynthetic ecosystems and the deep sea in general.


PLOS Biology | 2013

Biotic and Human Vulnerability to Projected Changes in Ocean Biogeochemistry over the 21st Century

Camilo Mora; Chih-Lin Wei; Audrey Rollo; Teresa Amaro; Amy R. Baco; David S.M. Billett; Laurent Bopp; Qi Chen; Mark A. Collier; Roberto Danovaro; Andrew J. Gooday; Benjamin M. Grupe; Paul R. Halloran; Jeroen Ingels; Daniel O.B. Jones; Lisa A. Levin; Hideyuki Nakano; Karl Norling; Eva Ramírez-Llodra; Michael A. Rex; Henry A. Ruhl; Craig R. Smith; Andrew K. Sweetman; Andrew R. Thurber; Jerry Tjiputra; Paolo Usseglio; Les Watling; Tongwen Wu; Moriaki Yasuhara

Mora and colleagues show that ongoing greenhouse gas emissions are likely to have a considerable effect on several biogeochemical properties of the worlds oceans, with potentially serious consequences for biodiversity and human welfare.


Frontiers in Marine Science | 2016

Hydrothermal Vents and Methane Seeps: Rethinking the Sphere of Influence

Lisa A. Levin; Amy R. Baco; David A. Bowden; Ana Colaço; Erik E. Cordes; Marina R. Cunha; Amanda W.J. Demopoulos; Judith Gobin; Benjamin M. Grupe; Jennifer T. Le; Anna Metaxas; Amanda Netburn; Greg W. Rouse; Andrew R. Thurber; Verena Tunnicliffe; Cindy Lee Van Dover; Ann Vanreusel; Les Watling

Although initially viewed as oases within a barren deep ocean, hydrothermal vent and methane seep communities are now recognized to interact with surrounding ecosystems on the sea floor and in the water column, and to affect global geochemical cycles. The importance of understanding these interactions is growing as the potential rises for disturbance from oil and gas extraction, seabed mining and bottom trawling. Here we synthesize current knowledge of the nature, extent and time and space scales of vent and seep interactions with background systems. We document an expanded footprint beyond the site of local venting or seepage with respect to elemental cycling and energy flux, habitat use, trophic interactions, and connectivity. Heat and energy are released, global biogeochemical and elemental cycles are modified, and particulates are transported widely in plumes. Hard and biotic substrates produced at vents and seeps are used by “benthic background” fauna for attachment substrata, shelter, and access to food via grazing or through position in the current, while particulates and fluid fluxes modify planktonic microbial communities. Chemosynthetic production provides nutrition to a host of benthic and planktonic heterotrophic background species through multiple horizontal and vertical transfer pathways assisted by flow, gamete release, animal movements, and succession, but these pathways remain poorly known. Shared species, genera and families indicate that ecological and evolutionary connectivity exists among vents, seeps, organic falls and background communities in the deep sea; the genetic linkages with inactive vents and seeps and background assemblages however, are practically unstudied. The waning of venting or seepage activity generates major transitions in space and time that create links to surrounding ecosystems, often with identifiable ecotones or successional stages. The nature of all these interactions is dependent on water depth, as well as regional oceanography and biodiversity. Many ecosystem services are associated with the interactions and transitions between chemosynthetic and background ecosystems, for example carbon cycling and sequestration, fisheries production, and a host of non-market and cultural services. The quantification of the sphere of influence of vents and seeps could be beneficial to better management of deep-sea environments in the face of growing industrialization.


Proceedings of the Royal Society of London B: Biological Sciences | 2012

A hydrothermal seep on the Costa Rica margin: middle ground in a continuum of reducing ecosystems

Lisa A. Levin; Victoria J. Orphan; Greg W. Rouse; Anthony E. Rathburn; William Ussler; Geoffrey S. Cook; Shana K. Goffredi; E. Perez; Anders Warén; Benjamin M. Grupe; Grayson L. Chadwick; Bruce Strickrott

Upon their initial discovery, hydrothermal vents and methane seeps were considered to be related but distinct ecosystems, with different distributions, geomorphology, temperatures, geochemical properties and mostly different species. However, subsequently discovered vents and seep systems have blurred this distinction. Here, we report on a composite, hydrothermal seep ecosystem at a subducting seamount on the convergent Costa Rica margin that represents an intermediate between vent and seep ecosystems. Diffuse flow of shimmering, warm fluids with high methane concentrations supports a mixture of microbes, animal species, assemblages and trophic pathways with vent and seep affinities. Their coexistence reinforces the continuity of reducing environments and exemplifies a setting conducive to interactive evolution of vent and seep biota.


Mbio | 2015

Methane Seep Carbonates Host Distinct, Diverse, and Dynamic Microbial Assemblages

David H. Case; Alexis L. Pasulka; Jeffrey J. Marlow; Benjamin M. Grupe; Lisa A. Levin; Victoria J. Orphan

ABSTRACT Marine methane seeps are globally distributed geologic features in which reduced fluids, including methane, are advected upward from the subsurface. As a result of alkalinity generation during sulfate-coupled methane oxidation, authigenic carbonates form slabs, nodules, and extensive pavements. These carbonates shape the landscape within methane seeps, persist long after methane flux is diminished, and in some cases are incorporated into the geologic record. In this study, microbial assemblages from 134 native and experimental samples across 5,500 km, representing a range of habitat substrates (carbonate nodules and slabs, sediment, bottom water, and wood) and seepage conditions (active and low activity), were analyzed to address two fundamental questions of seep microbial ecology: (i) whether carbonates host distinct microbial assemblages and (ii) how sensitive microbial assemblages are to habitat substrate type and temporal shifts in methane seepage flux. Through massively parallel 16S rRNA gene sequencing and statistical analysis, native carbonates are shown to be reservoirs of distinct and highly diverse seep microbial assemblages. Unique coupled transplantation and colonization experiments on the seafloor demonstrated that carbonate-associated microbial assemblages are resilient to seep quiescence and reactive to seep activation over 13 months. Various rates of response to simulated seep quiescence and activation are observed among similar phylogenies (e.g., Chloroflexi operational taxonomic units) and similar metabolisms (e.g., putative S oxidizers), demonstrating the wide range of microbial sensitivity to changes in seepage flux. These results imply that carbonates do not passively record a time-integrated history of seep microorganisms but rather host distinct, diverse, and dynamic microbial assemblages. IMPORTANCE Since their discovery in 1984, the global distribution and importance of marine methane seeps have become increasingly clear. Much of our understanding of methane seep microorganisms—from metabolisms to community ecology—has stemmed from detailed studies of seep sediments. However, it has become apparent that carbonates represent a volumetrically significant habitat substrate at methane seeps. Through combined in situ characterization and incubation experiments, this study demonstrates that carbonates host microbial assemblages distinct from and more diverse than those of other seep habitats. This emphasizes the importance of seep carbonates as biodiversity locales. Furthermore, we demonstrate that carbonate-associated microbial assemblages are well adapted to withstand fluctuations in methane seepage, and we gain novel insight into particular taxa that are responsive (or recalcitrant) to changes in seep conditions. Since their discovery in 1984, the global distribution and importance of marine methane seeps have become increasingly clear. Much of our understanding of methane seep microorganisms—from metabolisms to community ecology—has stemmed from detailed studies of seep sediments. However, it has become apparent that carbonates represent a volumetrically significant habitat substrate at methane seeps. Through combined in situ characterization and incubation experiments, this study demonstrates that carbonates host microbial assemblages distinct from and more diverse than those of other seep habitats. This emphasizes the importance of seep carbonates as biodiversity locales. Furthermore, we demonstrate that carbonate-associated microbial assemblages are well adapted to withstand fluctuations in methane seepage, and we gain novel insight into particular taxa that are responsive (or recalcitrant) to changes in seep conditions.


Geophysical Research Letters | 2015

Transpressional segment boundaries in strike‐slip fault systems offshore southern California: Implications for fluid expulsion and cold seep habitats

Jillian Maloney; Benjamin M. Grupe; Alexis L. Pasulka; Katherine S. Dawson; David H. Case; Christina A. Frieder; Lisa A. Levin; Neal W. Driscoll

The importance of tectonics and fluid flow in controlling cold seep habitats has long been appreciated at convergent margins but remains poorly understood in strike-slip systems. Here we present geophysical, geochemical, and biological data from an active methane seep offshore from Del Mar, California, in the inner California borderlands (ICB). The location of this seep appears controlled by localized transpression associated with a step in the San Diego Trough fault zone and provides an opportunity to examine the interplay between fluid expulsion and restraining step overs along strike-slip fault systems. These segment boundaries may have important controls on seep locations in the ICB and other margins characterized by strike-slip faulting (e.g., Greece, Sea of Marmara, and Caribbean). The strike-slip fault systems offshore southern California appear to have a limited distribution of seep sites compared to a wider distribution at convergent plate boundaries, which may influence seep habitat diversity and connectivity.


Elementa: Science of the Anthropocene | 2017

Major impacts of climate change on deep-sea benthic ecosystems

Andrew K. Sweetman; Andrew R. Thurber; Craig R. Smith; Lisa A. Levin; Camilo Mora; Chih-Lin Wei; Andrew J. Gooday; Daniel O.B. Jones; Michael A. Rex; Moriaki Yasuhara; Jeroen Ingels; Henry A. Ruhl; Christina A. Frieder; Roberto Danovaro; Laura Würzberg; Amy R. Baco; Benjamin M. Grupe; Alexis L. Pasulka; Kirstin S. Meyer; Katherine M. Dunlop; Lea-Anne Henry; J. Murray Roberts


Marine Ecology | 2015

Methane seep ecosystem functions and services from a recently discovered southern California seep

Benjamin M. Grupe; Monika L. Krach; Alexis L. Pasulka; Jillian Maloney; Lisa A. Levin; Christina A. Frieder


Frontiers in Microbiology | 2014

Microsporidia-nematode associations in methane seeps reveal basal fungal parasitism in the deep sea

Amir Sapir; Adler R. Dillman; Stephanie A. Connon; Benjamin M. Grupe; Jeroen Ingels; Manuel Mundo-Ocampo; Lisa A. Levin; James G. Baldwin; Victoria J. Orphan; Paul W. Sternberg


Deep-sea Research Part Ii-topical Studies in Oceanography | 2017

Methane seepage effects on biodiversity and biological traits of macrofauna inhabiting authigenic carbonates

Lisa A. Levin; Guillermo F. Mendoza; Benjamin M. Grupe

Collaboration


Dive into the Benjamin M. Grupe's collaboration.

Top Co-Authors

Avatar

Lisa A. Levin

Scripps Institution of Oceanography

View shared research outputs
Top Co-Authors

Avatar

Alexis L. Pasulka

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Greg W. Rouse

Scripps Institution of Oceanography

View shared research outputs
Top Co-Authors

Avatar

Amy R. Baco

Florida State University

View shared research outputs
Top Co-Authors

Avatar

David H. Case

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Guillermo F. Mendoza

Scripps Institution of Oceanography

View shared research outputs
Top Co-Authors

Avatar

Jillian Maloney

San Diego State University

View shared research outputs
Top Co-Authors

Avatar

Victoria J. Orphan

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge