Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Greg W. Rouse is active.

Publication


Featured researches published by Greg W. Rouse.


Nature | 2008

Broad phylogenomic sampling improves resolution of the animal tree of life.

Casey W. Dunn; Andreas Hejnol; David Q. Matus; Kevin Pang; William E. Browne; Stephen A. Smith; Elaine C. Seaver; Greg W. Rouse; Matthias Obst; Gregory D. Edgecombe; Martin V. Sørensen; Steven H. D. Haddock; Andreas Schmidt-Rhaesa; Akiko Okusu; Reinhardt Møbjerg Kristensen; Ward C. Wheeler; Mark Q. Martindale; Gonzalo Giribet

Long-held ideas regarding the evolutionary relationships among animals have recently been upended by sometimes controversial hypotheses based largely on insights from molecular data. These new hypotheses include a clade of moulting animals (Ecdysozoa) and the close relationship of the lophophorates to molluscs and annelids (Lophotrochozoa). Many relationships remain disputed, including those that are required to polarize key features of character evolution, and support for deep nodes is often low. Phylogenomic approaches, which use data from many genes, have shown promise for resolving deep animal relationships, but are hindered by a lack of data from many important groups. Here we report a total of 39.9 Mb of expressed sequence tags from 29 animals belonging to 21 phyla, including 11 phyla previously lacking genomic or expressed-sequence-tag data. Analysed in combination with existing sequences, our data reinforce several previously identified clades that split deeply in the animal tree (including Protostomia, Ecdysozoa and Lophotrochozoa), unambiguously resolve multiple long-standing issues for which there was strong conflicting support in earlier studies with less data (such as velvet worms rather than tardigrades as the sister group of arthropods), and provide molecular support for the monophyly of molluscs, a group long recognized by morphologists. In addition, we find strong support for several new hypotheses. These include a clade that unites annelids (including sipunculans and echiurans) with nemerteans, phoronids and brachiopods, molluscs as sister to that assemblage, and the placement of ctenophores as the earliest diverging extant multicellular animals. A single origin of spiral cleavage (with subsequent losses) is inferred from well-supported nodes. Many relationships between a stable subset of taxa find strong support, and a diminishing number of lineages remain recalcitrant to placement on the tree.


Nature | 2011

Resolving the evolutionary relationships of molluscs with phylogenomic tools

Stephen A. Smith; Nerida G. Wilson; Freya E. Goetz; Caitlin Feehery; Sónia C. S. Andrade; Greg W. Rouse; Gonzalo Giribet; Casey W. Dunn

Molluscs (snails, octopuses, clams and their relatives) have a great disparity of body plans and, among the animals, only arthropods surpass them in species number. This diversity has made Mollusca one of the best-studied groups of animals, yet their evolutionary relationships remain poorly resolved. Open questions have important implications for the origin of Mollusca and for morphological evolution within the group. These questions include whether the shell-less, vermiform aplacophoran molluscs diverged before the origin of the shelled molluscs (Conchifera) or lost their shells secondarily. Monoplacophorans were not included in molecular studies until recently, when it was proposed that they constitute a clade named Serialia together with Polyplacophora (chitons), reflecting the serial repetition of body organs in both groups. Attempts to understand the early evolution of molluscs become even more complex when considering the large diversity of Cambrian fossils. These can have multiple dorsal shell plates and sclerites or can be shell-less but with a typical molluscan radula and serially repeated gills. To better resolve the relationships among molluscs, we generated transcriptome data for 15 species that, in combination with existing data, represent for the first time all major molluscan groups. We analysed multiple data sets containing up to 216,402 sites and 1,185 gene regions using multiple models and methods. Our results support the clade Aculifera, containing the three molluscan groups with spicules but without true shells, and they support the monophyly of Conchifera. Monoplacophora is not the sister group to other Conchifera but to Cephalopoda. Strong support is found for a clade that comprises Scaphopoda (tusk shells), Gastropoda and Bivalvia, with most analyses placing Scaphopoda and Gastropoda as sister groups. This well-resolved tree will constitute a framework for further studies of mollusc evolution, development and anatomy.


Organisms Diversity & Evolution | 2011

Higher-level metazoan relationships: recent progress and remaining questions

Gregory D. Edgecombe; Gonzalo Giribet; Casey W. Dunn; Andreas Hejnol; Reinhardt Møbjerg Kristensen; Ricardo Cardoso Neves; Greg W. Rouse; Katrine Worsaae; Martin V. Sørensen

Metazoa comprises 35–40 phyla that include some 1.3 million described species. Phylogenetic analyses of metazoan interrelationships have progressed in the past two decades from those based on morphology and/or targeted-gene approaches using single and then multiple loci to the more recent phylogenomic approaches that use hundreds or thousands of genes from genome and transcriptome sequencing projects. A stable core of the tree for bilaterian animals is now at hand, and instability and conflict are becoming restricted to a key set of important but contentious relationships. Acoelomorph flatworms (Acoela + Nemertodermatida) and Xenoturbella are sister groups. The position of this clade remains controversial, with different analyses supporting either a sister-group relation to other bilaterians (=Nephrozoa, composed of Protostomia and Deuterostomia) or membership in Deuterostomia. The main clades of deuterostomes (Ambulacraria and Chordata) and protostomes (Ecdysozoa and Spiralia) are recovered in numerous analyses based on varied molecular samples, and also receive anatomical and developmental support. Outstanding issues in protostome phylogenetics are the position of Chaetognatha within the protostome clade, and the monophyly of a group of spiralians collectively named Platyzoa. In contrast to the broad consensus over key questions in bilaterian phylogeny, the relationships of the five main metazoan lineages—Porifera, Ctenophora, Placozoa, Cnidaria and Bilateria—remain subject to conflicting topologies according to different taxonomic samples and analytical approaches. Whether deep bilaterian divergences such as the split between protostome and deuterostome clades date to the Cryogenian or Ediacaran (and, thus, the extent to which the pre-Cambrian fossil record is incomplete) is sensitive to dating methodology.


Cladistics | 2007

A molecular phylogeny of annelids

Vincent Rousset; Fredrik Pleijel; Greg W. Rouse; Christer Erséus; Mark E. Siddall

We present parsimony analyses of annelids based on the largest taxon sample and most extensive molecular data set yet assembled, with two nuclear ribosomal genes (18S rDNA and the D1 region of 28S rDNA), one nuclear protein coding‐gene (Histone H3) and one mitochondrial ribosomal gene (16S rDNA) from 217 terminal taxa. Of these, 267 sequences are newly sequenced, and the remaining were obtained from GenBank. The included taxa are based on the criteria that the taxon must have 18S rDNA or at least two other loci. Our analyses show that 68% of annelid family ranked taxa represented by more than one taxon in our study are supported by a jackknife value > 50%. In spite of the size of our data set, the phylogenetic signal in the deepest part of the tree remains weak and the majority of the currently recognized major polychaete clades (except Amphinomida and Aphroditiformia) could not be recovered. Terbelliformia is monophyletic (with the exclusion of Pectinariidae, for which only 18S data were available), whereas members of taxa such as Phyllodocida, Cirratuliformia, Sabellida and Scolecida are scattered over the trees. Clitellata is monophyletic, although Dinophilidae should possibly be included, and Clitellata has a sister group within the polychaetes. One major problem is the current lack of knowledge on the closest relatives to annelids and the position of the annelid root. We suggest that the poor resolution in the basal parts of the trees presented here may be due to lack of signal connected to incomplete data sets both in terms of terminal and gene sampling, rapid radiation events and/or uneven evolutionary rates and long‐branch attraction.


PLOS ONE | 2015

Biodiversity on the Rocks: Macrofauna Inhabiting Authigenic Carbonate at Costa Rica Methane Seeps

Lisa A. Levin; Guillermo F. Mendoza; Benjamin M. Grupe; Jennifer P. Gonzalez; Brittany Jellison; Greg W. Rouse; Andrew R. Thurber; Anders Warén

Carbonate communities: The activity of anaerobic methane oxidizing microbes facilitates precipitation of vast quantities of authigenic carbonate at methane seeps. Here we demonstrate the significant role of carbonate rocks in promoting diversity by providing unique habitat and food resources for macrofaunal assemblages at seeps on the Costa Rica margin (400–1850 m). The attendant fauna is surprisingly similar to that in rocky intertidal shores, with numerous grazing gastropods (limpets and snails) as dominant taxa. However, the community feeds upon seep-associated microbes. Macrofaunal density, composition, and diversity on carbonates vary as a function of seepage activity, biogenic habitat and location. The macrofaunal community of carbonates at non-seeping (inactive) sites is strongly related to the hydrography (depth, temperature, O2) of overlying water, whereas the fauna at sites of active seepage is not. Densities are highest on active rocks from tubeworm bushes and mussel beds, particularly at the Mound 12 location (1000 m). Species diversity is higher on rocks exposed to active seepage, with multiple species of gastropods and polychaetes dominant, while crustaceans, cnidarians, and ophiuroids were better represented on rocks at inactive sites. Macro-infauna (larger than 0.3 mm) from tube cores taken in nearby seep sediments at comparable depths exhibited densities similar to those on carbonate rocks, but had lower diversity and different taxonomic composition. Seep sediments had higher densities of ampharetid, dorvilleid, hesionid, cirratulid and lacydoniid polychaetes, whereas carbonates had more gastropods, as well as syllid, chrysopetalid and polynoid polychaetes. Stable isotope signatures and metrics: The stable isotope signatures of carbonates were heterogeneous, as were the food sources and nutrition used by the animals. Carbonate δ13Cinorg values (mean = -26.98‰) ranged from -53.3‰ to +10.0‰, and were significantly heavier than carbonate δ13Corg (mean = -33.83‰), which ranged from -74.4‰ to -20.6‰. Invertebrates on carbonates had average δ13C (per rock) = -31.0‰ (range -18.5‰ to -46.5‰) and δ15N = 5.7‰ (range -4.5‰ to +13.4‰). Average δ13C values did not differ between active and inactive sites; carbonate fauna from both settings depend on chemosynthesis-based nutrition. Community metrics reflecting trophic diversity (SEAc, total Hull Area, ranges of δ13C and δ15N) and species packing (mean distance to centroid, nearest neighbor distance) also did not vary as a function of seepage activity or site. However, distinct isotopic signatures were observed among related, co-occurring species of gastropods and polychaetes, reflecting intense microbial resource partitioning. Overall, the substrate and nutritional heterogeneity introduced by authigenic seep carbonates act to promote diverse, uniquely adapted assemblages, even after seepage ceases. The macrofauna in these ecosystems remain largely overlooked in most surveys, but are major contributors to biodiversity of chemosynthetic ecosystems and the deep sea in general.


Zoologica Scripta | 1994

Broadcasting fables: Is external fertilization really primitive? Sex, size, and larvae in sabellid polychaetes

Greg W. Rouse; Kirk Fitzhugh

Traditionally, broadcast spawning and planktonic larvae have been considered the plesiomorphic ‘ground plan’ for the Polychaeta and other metazoan groups. To assess whether this reproductive mode is in fact ‘primitive’, the study of monophyletic groups with various reproductive modes should be informative. A large range of body sizes would allow testing the ideas that aspects of reproductive mode may be functionally constrained. The family Sabellidac is one such group, with sexual reproductive modes ranging from broadcast spawning to intratubular brooding to ovovivi‐parity, and a body size range over more than five orders of magnitude. Sabellids have previously been the subject of detailed cladistic analyses (Fitzhugh 1989, 1991); here we introduce several new characters based on morphology of reproductive structures. Larval development in four brooding sabellid species is also described with the aim of introducing new characters for future systematic analyses. Our cladistic analysis of sabellid genera suggests that gonochorism and brooding of direct‐developing larvae are plesiomorphic in the Sabellidae, with external fertilization and swimming larvae limited to apomorphie clades in the subfamily Sabellinae. The presence of sperm with elongate heads may be correlated with the presence of intratubular brooding, though an adequate causal explanation for this relationship can not yet be presented. The concept that ‘modified’ sperm must be derived from ‘primitive’ sperm is shown to be false, with ‘modified’ sperm being plesiomorphic for the Sabellidae, from which ‘primitive’ sperm is derived in apomorphic Sabellinae. All sabellids have lecithotrophic development and appear to be phylogenetically constrained in this regard. Data gathered on body size and reproductive variables in the Sabellidac suggests the following (when phylogenetic effects are not controlled): (1) egg number and total egg volume are significantly correlated with body size, with small animals having fewer, larger eggs than large animals; (2) individual egg volume is not correlated with body size; (3) reproductive mode is significantly correlated with body size; intratubular brooders tend to be small‐bodied, whereas broadcast spawners are large. However when the effect of body size is controlled for, then (4) egg number, egg volume and total egg volume all vary significantly with reproductive mode. Broadcast spawners expel a large number of small eggs for a high total egg volurne. Intratubular brooders have a few relatively large eggs for a small total egg volume. When statistics arc performed using phylogenetically independent contrasts there is a significant correlation between total egg volume and body size but not for egg number and body size. The effect of non‐independence (due to phylogeny) of our data needs to be more fully controlled in future analyses but methods of incorporating continuous data into cladistic analyses should also be investigated. We show that some predictions can be made about reproductive mode based on body size but ad hoc patterns of reproductive character‐state transformation should not be made independent of empirical hypotheses of phylogenetic relationship. Further studies of this kind throughout the Annelida are needed to determine the plesiomorphic reproductive mode for the phylum.


Zoologica Scripta | 1995

The articulation of annelids

Greg W. Rouse; Kristian Fauchald

The aim of this paper is to assess the monophyly of the Annelida. Also, recent cladistic analyses of metazoan taxa, using a variety of data, have shown incongruities with regards to annelids and associated taxa that should be resolved. The Platyhelminthes is selected as the taxon to root our minimal length trees and polarise our characters in a parsimony analysis; ingroup taxa being Mollusca, Nemertea, Sipuncula, Echiura, Pogonophora, Vestimentifera, Euarthropoda, Onycho‐phora, and the groups most commonly regarded as true ‘annelids’, the Clitellata and Polychaeta. We use 13 characters and a total of 33 states. This results in 18 minimal length trees of 23 steps. The consensus tree has the topology (Platyhelminthes (Nemertea (Sipuncula Mollusca (Echiura (Polychaeta (Vestimcntifera Pogonophora) Clitellata (Euarthropoda Onychophora)))))). The name Articulata is applied to the Clitellata, Euarthropoda, Onychophora, Pogonophora, Polychaeta, and Vestimentifera. The Vestimentifera is the sister group to, or more likely a clade within, the frenulate pogonophores, and the name Pogonophora is retained for this group. In half of the 18 minimal length trees, the traditionally formulated Annelida, i.e. Polychaeta and Clitellata, is paraphyletic if the Pogonophora are excluded. In the remaining minimal length trees, a monophyletic Annelida cannot be formulated. The name Annelida should not be used unless relationships within the Articulata are resolved to show it is a monophyletic taxon. The taxon name Articulata, originally formulated to include the Annelida and Arthropoda by Cuvier, is defined as the clade stemming from the first ancestor to show repetition of homologous body structures derived by teloblastic growth with a pygidial growth zone (segmentation) and longitudinal muscles broken into bands. The Articulata is considered, on current evidence, to consist of four monophyletic groups; the Arthropoda, Clitellata, Polychaeta, and Pogonophora, though the latter group may be a clade of polychaetes. If this is shown, the Pogonophora should revert to the original family name Lamellisabellidae Uschakov, 1933. An indented classification reflective of the cladistic pattern is provided. Other recent hypotheses about metazoan systematics arc analysed.


Biological Reviews | 1989

THE SPERMATOZOA OF THE POLYCHAETA (ANNELIDA): AN ULTRASTRUCTURAL REVIEW

B. G. M. Jamieson; Greg W. Rouse

1. Polychaete sperm are divisible into ect‐aquasperm, ent‐aquasperm, and introsperm.


Systematics and Biodiversity | 2006

Taxonomic surrogacy in biodiversity assessments, and the meaning of Linnaean ranks

Y. Bertrand; Fredrik Pleijel; Greg W. Rouse

Abstract The majority of biodiversity assessments use species as the base unit. Recently, a series of studies have suggested replacing numbers of species with higher ranked taxa (genera, families, etc.); a method known as taxonomic surrogacy that has an important potential to save time and resources in assesments of biological diversity. We examine the relationships between taxa and ranks, and suggest that species/higher taxon exchanges are founded on misconceptions about the properties of Linnaean classification. Rank allocations in current classifications constitute a heterogeneous mixture of various historical and contemporary views. Even if all taxa were monophyletic, those referred to the same rank would simply denote separate clades without further equivalence. We conclude that they are no more comparable than any other, non‐nested taxa, such as, for example, the genus Rattus and the phylum Arthropoda, and that taxonomic surrogacy lacks justification. These problems are also illustrated with data of polychaetous annelid worms from a broad‐scale study of benthic biodiversity and species distributions in the Irish Sea. A recent consensus phylogeny for polychaetes is used to provide three different family‐level classifications of polychaetes. We use families as a surrogate for species, and present Shannon‐Wiener diversity indices for the different sites and the three different classifications, showing how the diversity measures rely on subjective rank allocations.


Proceedings of the Royal Society B: Biological Sciences | 2000

Least-inclusive taxonomic unit: a new taxonomic concept for biology.

Fredrik Pleijel; Greg W. Rouse

Phylogenetic taxonomy has been introduced as a replacement for the Linnaean system. It differs from traditional nomenclature in defining taxon names with reference to phylogenetic trees and in not employing ranks for supraspecific taxa. However, ‘species’ are currently kept distinct. Within a system of phylogenetic taxonomy we believe that taxon names should refer to monophyletic groups only and that species should not be recognized as taxa. To distinguish the smallest identified taxa, we here introduce the least–inclusive taxonomic unit (LITU), which are differentiated from more inclusive taxa by initial lower–case letters. LITUs imply nothing absolute about inclusiveness, only that subdivisions are not presently recognized.

Collaboration


Dive into the Greg W. Rouse's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert C. Vrijenhoek

Monterey Bay Aquarium Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shana K. Goffredi

Monterey Bay Aquarium Research Institute

View shared research outputs
Top Co-Authors

Avatar

Charles G. Messing

Nova Southeastern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shannon B. Johnson

Monterey Bay Aquarium Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge