Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin M. Peter is active.

Publication


Featured researches published by Benjamin M. Peter.


Nature | 2014

Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA

Emilia Huerta-Sanchez; Xin Jin; Asan; Zhuoma Bianba; Benjamin M. Peter; Nicolas Vinckenbosch; Yu Liang; Xin Yi; Mingze He; Peixiang Ni; Bo Wang; Xiaohua Ou; Huasang; Jiangbai Luosang; Zha Xi Ping Cuo; Kui Li; Guoyi Gao; Ye Yin; Wei Wang; Xiuqing Zhang; Xun Xu; Huanming Yang; Yingrui Li; Jian Wang; Jun Wang; Rasmus Nielsen

As modern humans migrated out of Africa, they encountered many new environmental conditions, including greater temperature extremes, different pathogens and higher altitudes. These diverse environments are likely to have acted as agents of natural selection and to have led to local adaptations. One of the most celebrated examples in humans is the adaptation of Tibetans to the hypoxic environment of the high-altitude Tibetan plateau. A hypoxia pathway gene, EPAS1, was previously identified as having the most extreme signature of positive selection in Tibetans, and was shown to be associated with differences in haemoglobin concentration at high altitude. Re-sequencing the region around EPAS1 in 40 Tibetan and 40 Han individuals, we find that this gene has a highly unusual haplotype structure that can only be convincingly explained by introgression of DNA from Denisovan or Denisovan-related individuals into humans. Scanning a larger set of worldwide populations, we find that the selected haplotype is only found in Denisovans and in Tibetans, and at very low frequency among Han Chinese. Furthermore, the length of the haplotype, and the fact that it is not found in any other populations, makes it unlikely that the haplotype sharing between Tibetans and Denisovans was caused by incomplete ancestral lineage sorting rather than introgression. Our findings illustrate that admixture with other hominin species has provided genetic variation that helped humans to adapt to new environments.


PLOS Genetics | 2012

Distinguishing between Selective Sweeps from Standing Variation and from a De Novo Mutation

Benjamin M. Peter; Emilia Huerta-Sanchez; Rasmus Nielsen

An outstanding question in human genetics has been the degree to which adaptation occurs from standing genetic variation or from de novo mutations. Here, we combine several common statistics used to detect selection in an Approximate Bayesian Computation (ABC) framework, with the goal of discriminating between models of selection and providing estimates of the age of selected alleles and the selection coefficients acting on them. We use simulations to assess the power and accuracy of our method and apply it to seven of the strongest sweeps currently known in humans. We identify two genes, ASPM and PSCA, that are most likely affected by selection on standing variation; and we find three genes, ADH1B, LCT, and EDAR, in which the adaptive alleles seem to have swept from a new mutation. We also confirm evidence of selection for one further gene, TRPV6. In one gene, G6PD, neither neutral models nor models of selective sweeps fit the data, presumably because this locus has been subject to balancing selection.


Molecular Ecology | 2010

Distinguishing between population bottleneck and population subdivision by a Bayesian model choice procedure

Benjamin M. Peter; Daniel Wegmann; Laurent Excoffier

Although most natural populations are genetically subdivided, they are often analysed as if they were panmictic units. In particular, signals of past demographic size changes are often inferred from genetic data by assuming that the analysed sample is drawn from a population without any internal subdivision. However, it has been shown that a bottleneck signal can result from the presence of some recent immigrants in a population. It thus appears important to contrast these two alternative scenarios in a model choice procedure to prevent wrong conclusions to be made. We use here an Approximate Bayesian Computation (ABC) approach to infer whether observed patterns of genetic diversity in a given sample are more compatible with it being drawn from a panmictic population having gone through some size change, or from one or several demes belonging to a recent finite island model. Simulations show that we can correctly identify samples drawn from a subdivided population in up to 95% of the cases for a wide range of parameters. We apply our model choice procedure to the case of the chimpanzee (Pan troglodytes) and find conclusive evidence that Western and Eastern chimpanzee samples are drawn from a spatially subdivided population.


Science | 2016

Chimpanzee genomic diversity reveals ancient admixture with bonobos

Marc de Manuel; Martin Kuhlwilm; Peter Frandsen; Vitor C. Sousa; Tariq Desai; Javier Prado-Martinez; Jessica Hernandez-Rodriguez; Isabelle Dupanloup; Oscar Lao; Pille Hallast; Joshua M. Schmidt; José María Heredia-Genestar; Andrea Benazzo; Guido Barbujani; Benjamin M. Peter; Lukas F. K. Kuderna; Ferran Casals; Samuel Angedakin; Mimi Arandjelovic; Christophe Boesch; Hjalmar S. Kühl; Linda Vigilant; Kevin E. Langergraber; John Novembre; Marta Gut; Ivo Gut; Arcadi Navarro; Frands Carlsen; Aida M. Andrés; Hans R. Siegismund

Of chimpanzees and bonobos Modern non-African human genomes contain genomic remnants that suggest that there was interbreeding between ancient humans and archaic hominoid lineages. Now, de Manuel et al. show similar ancestral interbreeding between the ancestors of todays chimpanzees and bonobos (see the Perspective by Hoelzel). The study also provides population-specific genetic markers that may be valuable for conservation efforts. Science, this issue p. 477; see also p. 414 Genome sequences reveal ancient interbreeding between chimpanzees and bonobos. Our closest living relatives, chimpanzees and bonobos, have a complex demographic history. We analyzed the high-coverage whole genomes of 75 wild-born chimpanzees and bonobos from 10 countries in Africa. We found that chimpanzee population substructure makes genetic information a good predictor of geographic origin at country and regional scales. Multiple lines of evidence suggest that gene flow occurred from bonobos into the ancestors of central and eastern chimpanzees between 200,000 and 550,000 years ago, probably with subsequent spread into Nigeria-Cameroon chimpanzees. Together with another, possibly more recent contact (after 200,000 years ago), bonobos contributed less than 1% to the central chimpanzee genomes. Admixture thus appears to have been widespread during hominid evolution.


Evolution | 2013

DETECTING RANGE EXPANSIONS FROM GENETIC DATA

Benjamin M. Peter; Montgomery Slatkin

We propose a method that uses genetic data to test for the occurrence of a recent range expansion and to infer the location of the origin of the expansion. We introduce a statistic ψ (the directionality index) that detects asymmetries in the 2D allele frequency spectrum of pairs of population. These asymmetries are caused by the series of founder events that happen during an expansion and they arise because low frequency alleles tend to be lost during founder events, thus creating clines in the frequencies of surviving low‐frequency alleles. Using simulations, we show that ψ is more powerful for detecting range expansions than both FST and clines in heterozygosity. We also show how we can adapt our approach to more complicated scenarios such as expansions with multiple origins or barriers to migration and we illustrate the utility of ψ by applying it to a data set from modern humans.


PLOS Genetics | 2014

Selection on a Variant Associated with Improved Viral Clearance Drives Local, Adaptive Pseudogenization of Interferon Lambda 4 (IFNL4)

Felix M. Key; Benjamin M. Peter; Megan Y. Dennis; Emilia Huerta-Sanchez; Wei Tang; Ludmila Prokunina-Olsson; Rasmus Nielsen; Aida M. Andrés

Interferon lambda 4 gene (IFNL4) encodes IFN-λ4, a new member of the IFN-λ family with antiviral activity. In humans IFNL4 open reading frame is truncated by a polymorphic frame-shift insertion that eliminates IFN-λ4 and turns IFNL4 into a polymorphic pseudogene. Functional IFN-λ4 has antiviral activity but the elimination of IFN-λ4 through pseudogenization is strongly associated with improved clearance of hepatitis C virus (HCV) infection. We show that functional IFN-λ4 is conserved and evolutionarily constrained in mammals and thus functionally relevant. However, the pseudogene has reached moderately high frequency in Africa, America, and Europe, and near fixation in East Asia. In fact, the pseudogenizing variant is among the 0.8% most differentiated SNPs between Africa and East Asia genome-wide. Its raise in frequency is associated with additional evidence of positive selection, which is strongest in East Asia, where this variant falls in the 0.5% tail of SNPs with strongest signatures of recent positive selection genome-wide. Using a new Approximate Bayesian Computation (ABC) approach we infer that the pseudogenizing allele appeared just before the out-of-Africa migration and was immediately targeted by moderate positive selection; selection subsequently strengthened in European and Asian populations resulting in the high frequency observed today. This provides evidence for a changing adaptive process that, by favoring IFN-λ4 inactivation, has shaped present-day phenotypic diversity and susceptibility to disease.


Molecular Ecology | 2016

Phylogenomics at the tips: inferring lineages and their demographic history in a tropical lizard, Carlia amax.

Sally Potter; Jason G. Bragg; Benjamin M. Peter; Ke Bi; Craig Moritz

High‐throughput sequencing approaches offer opportunities to better understand the evolutionary processes driving diversification, particularly in nonmodel organisms. In particular, the 100–1000s of loci that can now be sequenced are providing unprecedented power in population, speciation and phylogenetic studies. Here, we apply an exon capture approach to generate >99% complete sequence and SNP data across >2000 loci from a tropical skink, Carlia amax, and exploit these data to identify divergent lineages and infer their relationships and demographic histories. This is especially relevant to low‐dispersal tropical taxa that often have cryptic diversity and spatially dynamic histories. For C. amax, clustering of nuclear SNPs and coalescent‐based species delimitation analyses identify four divergent lineages, one fewer than predicted based on geographically coherent mtDNA clades (>9.4% sequence divergence). Three of these lineages are widespread and parapatric on the mainland, whereas the most divergent is restricted to islands off the northeast Northern Territory. Tests for population expansion reject an equilibrium isolation‐by‐distance model for two of the three widespread lineages and infer refugial expansion sources in the relatively mesic northeast Top End and northwest Kimberley. The latter is already recognized as a hotspot of endemism, but our results also suggest that a stronger focus on the northeast Top End, and adjacent islands is warranted. More generally, our results show how genome‐reduction methods such as exon capture can yield insights into the pattern and dynamics of biodiversity across complex landscapes with as yet poorly understood biogeographic history and how exon data can link between population and phylogenetic questions.


Genetics | 2016

Admixture, Population Structure and F-Statistics

Benjamin M. Peter

Many questions about human genetic history can be addressed by examining the patterns of shared genetic variation between sets of populations. A useful methodological framework for this purpose is F-statistics that measure shared genetic drift between sets of two, three, and four populations and can be used to test simple and complex hypotheses about admixture between populations. This article provides context from phylogenetic and population genetic theory. I review how F-statistics can be interpreted as branch lengths or paths and derive new interpretations, using coalescent theory. I further show that the admixture tests can be interpreted as testing general properties of phylogenies, allowing extension of some ideas applications to arbitrary phylogenetic trees. The new results are used to investigate the behavior of the statistics under different models of population structure and show how population substructure complicates inference. The results lead to simplified estimators in many cases, and I recommend to replace F3 with the average number of pairwise differences for estimating population divergence.


Molecular Biology and Evolution | 2016

Estimating the ages of selection signals from different epochs in human history

Shigeki Nakagome; Gorka Alkorta-Aranburu; Roberto Amato; Bryan Howie; Benjamin M. Peter; Richard R. Hudson; Anna Di Rienzo

Genetic variation harbors signatures of natural selection driven by selective pressures that are often unknown. Estimating the ages of selection signals may allow reconstructing the history of environmental changes that shaped human phenotypes and diseases. We have developed an approximate Bayesian computation (ABC) approach to estimate allele ages under a model of selection on new mutations and under demographic models appropriate for human populations. We have applied it to two resequencing data sets: An ultra-high depth data set from a relatively small sample of unrelated individuals and a lower depth data set in a larger sample with transmission information. In addition to evaluating the accuracy of our method based on simulations, for each SNP, we assessed the consistency between the posterior probabilities estimated by the ABC approach and the ancient DNA record, finding good agreement between the two types of data and methods. Applying this ABC approach to data for eight single nucleotide polymorphisms (SNPs), we were able to rule out an onset of selection prior to the dispersal out-of-Africa for three of them and more recent than the spread of agriculture for an additional three SNPs.


Evolution | 2015

The effective founder effect in a spatially expanding population

Benjamin M. Peter; Montgomery Slatkin

The gradual loss of diversity and the establishment of clines in allele frequencies associated with range expansions are patterns observed in many species, including humans. These patterns can result from a series of founder events occurring as populations colonize previously unoccupied areas. We develop a model of an expanding population and, using a branching process approximation, show that spatial gradients reflect different amounts of genetic drift experienced by different subpopulations. We then use this model to measure the net average strength of the founder effect, and we demonstrate that the predictions from the branching process model fit simulation results well. We further show that estimates of the effective founder size are robust to potential confounding factors such as migration between subpopulations. We apply our method to data from Arabidopsis thaliana. We find that the average founder effect is approximately three times larger in the Americas than in Europe, possibly indicating that a more recent, rapid expansion occurred.

Collaboration


Dive into the Benjamin M. Peter's collaboration.

Top Co-Authors

Avatar

Rasmus Nielsen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cynthia M. Beall

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Geoff Childs

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge