Megan Y. Dennis
University of Washington
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Megan Y. Dennis.
Molecular Psychiatry | 2006
D Harold; Silvia Paracchini; Thomas S. Scerri; Megan Y. Dennis; Natalie Cope; Gary Hill; Valentina Moskvina; Janet Walter; Alex J. Richardson; Michael John Owen; John F. Stein; Eric D. Green; Michael Conlon O'Donovan; Julie Williams; Anthony P. Monaco
The DYX2 locus on chromosome 6p22.2 is the most replicated region of linkage to developmental dyslexia (DD). Two candidate genes within this region have recently been implicated in the disorder: KIAA0319 and DCDC2. Variants within DCDC2 have shown association with DD in a US and a German sample. However, when we genotyped these specific variants in two large, independent UK samples, we obtained only weak, inconsistent evidence for their involvement in DD. Having previously found evidence that variation in the KIAA0319 gene confers susceptibility to DD, we sought to refine this genetic association by genotyping 36 additional SNPs in the gene. Nine SNPs, predominantly clustered around the first exon, showed the most significant association with DD in one or both UK samples, including rs3212236 in the 5′ flanking region (P=0.00003) and rs761100 in intron 1 (P=0.0004). We have thus refined the region of association with developmental dyslexia to putative regulatory sequences around the first exon of the KIAA0319 gene, supporting the presence of functional mutations that could affect gene expression. Our data also suggests a possible interaction between KIAA0319 and DCDC2, which requires further testing.
Genome Research | 2014
John Huddleston; Swati Ranade; Maika Malig; Francesca Antonacci; Mark Chaisson; Lawrence Hon; Peter H. Sudmant; Tina Graves; Can Alkan; Megan Y. Dennis; Richard Wilson; Stephen Turner; Jonas Korlach; Evan E. Eichler
Obtaining high-quality sequence continuity of complex regions of recent segmental duplication remains one of the major challenges of finishing genome assemblies. In the human and mouse genomes, this was achieved by targeting large-insert clones using costly and laborious capillary-based sequencing approaches. Sanger shotgun sequencing of clone inserts, however, has now been largely abandoned, leaving most of these regions unresolved in newer genome assemblies generated primarily by next-generation sequencing hybrid approaches. Here we show that it is possible to resolve regions that are complex in a genome-wide context but simple in isolation for a fraction of the time and cost of traditional methods using long-read single molecule, real-time (SMRT) sequencing and assembly technology from Pacific Biosciences (PacBio). We sequenced and assembled BAC clones corresponding to a 1.3-Mbp complex region of chromosome 17q21.31, demonstrating 99.994% identity to Sanger assemblies of the same clones. We targeted 44 differences using Illumina sequencing and find that PacBio and Sanger assemblies share a comparable number of validated variants, albeit with different sequence context biases. Finally, we targeted a poorly assembled 766-kbp duplicated region of the chimpanzee genome and resolved the structure and organization for a fraction of the cost and time of traditional finishing approaches. Our data suggest a straightforward path for upgrading genomes to a higher quality finished state.
PLOS Genetics | 2010
Aida M. Andrés; Megan Y. Dennis; Warren W. Kretzschmar; Jennifer L. Cannons; Shih-Queen Lee-Lin; Belen Hurle; Nisc Comparative Sequencing Program; Pamela L. Schwartzberg; Scott Williamson; Carlos Bustamante; Rasmus Nielsen; Andrew G. Clark; Eric D. Green
A remarkable characteristic of the human major histocompatibility complex (MHC) is its extreme genetic diversity, which is maintained by balancing selection. In fact, the MHC complex remains one of the best-known examples of natural selection in humans, with well-established genetic signatures and biological mechanisms for the action of selection. Here, we present genetic and functional evidence that another gene with a fundamental role in MHC class I presentation, endoplasmic reticulum aminopeptidase 2 (ERAP2), has also evolved under balancing selection and contains a variant that affects antigen presentation. Specifically, genetic analyses of six human populations revealed strong and consistent signatures of balancing selection affecting ERAP2. This selection maintains two highly differentiated haplotypes (Haplotype A and Haplotype B), with frequencies 0.44 and 0.56, respectively. We found that ERAP2 expressed from Haplotype B undergoes differential splicing and encodes a truncated protein, leading to nonsense-mediated decay of the mRNA. To investigate the consequences of ERAP2 deficiency on MHC presentation, we correlated surface MHC class I expression with ERAP2 genotypes in primary lymphocytes. Haplotype B homozygotes had lower levels of MHC class I expressed on the surface of B cells, suggesting that naturally occurring ERAP2 deficiency affects MHC presentation and immune response. Interestingly, an ERAP2 paralog, endoplasmic reticulum aminopeptidase 1 (ERAP1), also shows genetic signatures of balancing selection. Together, our findings link the genetic signatures of selection with an effect on splicing and a cellular phenotype. Although the precise selective pressure that maintains polymorphism is unknown, the demonstrated differences between the ERAP2 splice forms provide important insights into the potential mechanism for the action of selection.
Nature Methods | 2012
Emre Karakoc; Can Alkan; Brian J. O'Roak; Megan Y. Dennis; Laura Vives; Kenneth Mark; Mark J. Rieder; Debbie A. Nickerson; Evan E. Eichler
We report an algorithm to detect structural variation and indels from 1 base pair (bp) to 1 Mbp within exome sequence data sets. Splitread uses one end–anchored placements to cluster the mappings of subsequences of unanchored ends to identify the size, content and location of variants with high specificity and sensitivity. The algorithm discovers indels, structural variants, de novo events and copy number–polymorphic processed pseudogenes missed by other methods.
PLOS Genetics | 2009
Megan Y. Dennis; Silvia Paracchini; Thomas S. Scerri; Ludmila Prokunina-Olsson; Julian C. Knight; Richard Wade-Martins; Penny Coggill; Stephan Beck; Eric D. Green; Anthony P. Monaco
Numerous genetic association studies have implicated the KIAA0319 gene on human chromosome 6p22 in dyslexia susceptibility. The causative variant(s) remains unknown but may modulate gene expression, given that (1) a dyslexia-associated haplotype has been implicated in the reduced expression of KIAA0319, and (2) the strongest association has been found for the region spanning exon 1 of KIAA0319. Here, we test the hypothesis that variant(s) responsible for reduced KIAA0319 expression resides on the risk haplotype close to the genes transcription start site. We identified seven single-nucleotide polymorphisms on the risk haplotype immediately upstream of KIAA0319 and determined that three of these are strongly associated with multiple reading-related traits. Using luciferase-expressing constructs containing the KIAA0319 upstream region, we characterized the minimal promoter and additional putative transcriptional regulator regions. This revealed that the minor allele of rs9461045, which shows the strongest association with dyslexia in our sample (max p-value = 0.0001), confers reduced luciferase expression in both neuronal and non-neuronal cell lines. Additionally, we found that the presence of this rs9461045 dyslexia-associated allele creates a nuclear protein-binding site, likely for the transcriptional silencer OCT-1. Knocking down OCT-1 expression in the neuronal cell line SHSY5Y using an siRNA restores KIAA0319 expression from the risk haplotype to nearly that seen from the non-risk haplotype. Our study thus pinpoints a common variant as altering the function of a dyslexia candidate gene and provides an illustrative example of the strategic approach needed to dissect the molecular basis of complex genetic traits.
Nature Genetics | 2014
Francesca Antonacci; Megan Y. Dennis; John Huddleston; Peter H. Sudmant; Karyn Meltz Steinberg; Jill A. Rosenfeld; Mattia Miroballo; Tina Graves; Laura Vives; Maika Malig; Laura Denman; Archana Raja; Andrew Stuart; Joyce Tang; Brenton Munson; Lisa G. Shaffer; Chris T. Amemiya; Richard Wilson; Evan E. Eichler
Recurrent deletions of chromosome 15q13.3 associate with intellectual disability, schizophrenia, autism and epilepsy. To gain insight into the instability of this region, we sequenced it in affected individuals, normal individuals and nonhuman primates. We discovered five structural configurations of the human chromosome 15q13.3 region ranging in size from 2 to 3 Mb. These configurations arose recently (∼0.5–0.9 million years ago) as a result of human-specific expansions of segmental duplications and two independent inversion events. All inversion breakpoints map near GOLGA8 core duplicons—a ∼14-kb primate-specific chromosome 15 repeat that became organized into larger palindromic structures. GOLGA8-flanked palindromes also demarcate the breakpoints of recurrent 15q13.3 microdeletions, the expansion of chromosome 15 segmental duplications in the human lineage and independent structural changes in apes. The significant clustering (P = 0.002) of breakpoints provides mechanistic evidence for the role of this core duplicon and its palindromic architecture in promoting the evolutionary and disease-related instability of chromosome 15.
Journal of Developmental and Behavioral Pediatrics | 2015
Varvara Mazina; Jennifer Gerdts; Sandy Trinh; Katy Ankenman; Tracey Ward; Megan Y. Dennis; Santhosh Girirajan; Evan E. Eichler; Raphael Bernier
Objective: Epidemiological data have suggested maternal infection and fever to be associated with increased risk of autism spectrum disorder (ASD). Animal studies show that gestational infections perturb fetal brain development and result in offspring with the core features of autism and have demonstrated that behavioral effects of maternal immune activation are dependent on genetic susceptibility. The goal of this study was to explore the impact of ASD-associated copy number variants (CNVs) and prenatal maternal infection on clinical severity of ASD within a dataset of prenatal history and complete genetic and phenotypic findings. Methods: We analyzed data from the Simons Simplex Collection sample including 1971 children with a diagnosis of ASD aged 4 to 18 years who underwent array comparative genomic hybridization screening. Information on infection and febrile episodes during pregnancy was collected through parent interview. ASD severity was clinically measured through parent-reported interview and questionnaires. Results: We found significant interactive effects between the presence of CNVs and maternal infection during pregnancy on autistic symptomatology, such that individuals with CNVs and history of maternal infection demonstrated increased rates of social communicative impairments and repetitive/restricted behaviors. In contrast, no significant interactions were found between presence of CNVs and prenatal infections on cognitive and adaptive functioning of individuals with ASD. Conclusions: Our findings support a gene-environment interaction model of autism impairment, in that individuals with ASD-associated CNVs are more susceptible to the effects of maternal infection and febrile episodes in pregnancy on behavioral outcomes and suggest that these effects are specific to ASD rather than to global neurodevelopment.
PLOS Genetics | 2014
Felix M. Key; Benjamin M. Peter; Megan Y. Dennis; Emilia Huerta-Sanchez; Wei Tang; Ludmila Prokunina-Olsson; Rasmus Nielsen; Aida M. Andrés
Interferon lambda 4 gene (IFNL4) encodes IFN-λ4, a new member of the IFN-λ family with antiviral activity. In humans IFNL4 open reading frame is truncated by a polymorphic frame-shift insertion that eliminates IFN-λ4 and turns IFNL4 into a polymorphic pseudogene. Functional IFN-λ4 has antiviral activity but the elimination of IFN-λ4 through pseudogenization is strongly associated with improved clearance of hepatitis C virus (HCV) infection. We show that functional IFN-λ4 is conserved and evolutionarily constrained in mammals and thus functionally relevant. However, the pseudogene has reached moderately high frequency in Africa, America, and Europe, and near fixation in East Asia. In fact, the pseudogenizing variant is among the 0.8% most differentiated SNPs between Africa and East Asia genome-wide. Its raise in frequency is associated with additional evidence of positive selection, which is strongest in East Asia, where this variant falls in the 0.5% tail of SNPs with strongest signatures of recent positive selection genome-wide. Using a new Approximate Bayesian Computation (ABC) approach we infer that the pseudogenizing allele appeared just before the out-of-Africa migration and was immediately targeted by moderate positive selection; selection subsequently strengthened in European and Asian populations resulting in the high frequency observed today. This provides evidence for a changing adaptive process that, by favoring IFN-λ4 inactivation, has shaped present-day phenotypic diversity and susceptibility to disease.
Current Opinion in Genetics & Development | 2016
Megan Y. Dennis; Evan E. Eichler
Duplications are the primary force by which new gene functions arise and provide a substrate for large-scale structural variation. Analysis of thousands of genomes shows that humans and great apes have more genetic differences in content and structure over recent segmental duplications than any other euchromatic region. Novel human-specific duplicated genes, ARHGAP11B and SRGAP2C, have recently been described with a potential role in neocortical expansion and increased neuronal spine density. Large segmental duplications and the structural variants they promote are also frequently stratified between human populations with a subset being subjected to positive selection. The impact of recent duplications on human evolution and adaptation is only beginning to be realized as new technologies enhance their discovery and accurate genotyping.
Nature Ecology and Evolution | 2017
Megan Y. Dennis; Lana Harshman; Bradley J. Nelson; Osnat Penn; Stuart Cantsilieris; John Huddleston; Francesca Antonacci; Kelsi Penewit; Laura Denman; Archana Raja; Carl Baker; Kenneth Mark; Maika Malig; Nicolette Janke; Claudia Espinoza; Holly A.F. Stessman; Xander Nuttle; Kendra Hoekzema; Tina A. Lindsay-Graves; Richard Wilson; Evan E. Eichler
Segmental duplications contribute to human evolution, adaptation and genomic instability but are often poorly characterized. We investigate the evolution, genetic variation and coding potential of human-specific segmental duplications (HSDs). We identify 218 HSDs based on analysis of 322 deeply sequenced archaic and contemporary hominid genomes. We sequence 550 human and nonhuman primate genomic clones to reconstruct the evolution of the largest, most complex regions with protein-coding potential (N = 80 genes from 33 gene families). We show that HSDs are non-randomly organized, associate preferentially with ancestral ape duplications termed ‘core duplicons’ and evolved primarily in an interspersed inverted orientation. In addition to Homo sapiens-specific gene expansions (such as TCAF1/TCAF2), we highlight ten gene families (for example, ARHGAP11B and SRGAP2C) where copy number never returns to the ancestral state, there is evidence of mRNA splicing and no common gene-disruptive mutations are observed in the general population. Such duplicates are candidates for the evolution of human-specific adaptive traits.