Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin M. Sleeter is active.

Publication


Featured researches published by Benjamin M. Sleeter.


Landscape Ecology | 2010

Addressing foundational elements of regional land-use change forecasting

Terry L. Sohl; Thomas R. Loveland; Benjamin M. Sleeter; Kristi L. Sayler; Christopher A. Barnes

Regional land-use models must address several foundational elements, including understanding geographic setting, establishing regional land-use histories, modeling process and representing drivers of change, representing local land-use patterns, managing issues of scale and complexity, and development of scenarios. Key difficulties include managing an array of biophysical and socioeconomic processes across multiple spatial and temporal scales, and acquiring and utilizing empirical data to support the analysis of those processes. The Southeastern and Pacific Northwest regions of the United States, two heavily forested regions with significant forest industries, are examined in the context of these foundational elements. Geographic setting fundamentally affects both the primary land cover (forest) in the two regions, and the structure and form of land use (forestry). Land-use histories of the regions can be used to parameterize land-use models, validate model performance, and explore land-use scenarios. Drivers of change in the two regions are many and varied, with issues of scale and complexity posing significant challenges. Careful scenario development can be used to simplify process-based land-use models, and can improve our ability to address specific research questions. The successful modeling of land-use change in these two areas requires integration of both top-down and bottom-up drivers of change, using scenario frameworks to both guide and simplify the modeling process. Modular approaches, with utilization and integration of existing process models, allow regional land-use modelers the opportunity to better represent primary drivers of land-use change. However, availability of data to represent driving forces remains a primary obstacle.


Ecological Applications | 2014

Spatially explicit modeling of 1992–2100 land cover and forest stand age for the conterminous United States

Terry L. Sohl; Kristi L. Sayler; Michelle Bouchard; Ryan R. Reker; Aaron M. Friesz; Stacie L. Bennett; Benjamin M. Sleeter; Rachel R. Sleeter; Tamara S. Wilson; Christopher E. Soulard; Michelle Knuppe; Travis Van Hofwegen

Information on future land-use and land-cover (LULC) change is needed to analyze the impact of LULC change on ecological processes. The U.S. Geological Survey has produced spatially explicit, thematically detailed LULC projections for the conterminous United States. Four qualitative and quantitative scenarios of LULC change were developed, with characteristics consistent with the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES). The four quantified scenarios (A1B, A2, B1, and B2) served as input to the forecasting scenarios of land-use change (FORE-SCE) model. Four spatially explicit data sets consistent with scenario storylines were produced for the conterminous United States, with annual LULC maps from 1992 through 2100. The future projections are characterized by a loss of natural land covers in most scenarios, with corresponding expansion of anthropogenic land uses. Along with the loss of natural land covers, remaining natural land covers experience increased fragmentation under most scenarios, with only the B2 scenario remaining relatively stable in both the proportion of remaining natural land covers and basic fragmentation measures. Forest stand age was also modeled. By 2100, scenarios and ecoregions with heavy forest cutting had relatively lower mean stand ages compared to those with less forest cutting. Stand ages differed substantially between unprotected and protected forest lands, as well as between different forest classes. The modeled data were compared to the National Land Cover Database (NLCD) and other data sources to assess model characteristics. The consistent, spatially explicit, and thematically detailed LULC projections and the associated forest stand-age data layers have been used to analyze LULC impacts on carbon and greenhouse gas fluxes, biodiversity, climate and weather variability, hydrologic change, and other ecological processes.


Landscape Ecology | 2015

Integrated climate and land use change scenarios for California rangeland ecosystem services: Wildlife habitat, soil carbon, and water supply

Kristin B. Byrd; Lorraine E. Flint; Pelayo Alvarez; Clyde F. Casey; Benjamin M. Sleeter; Christopher E. Soulard; Alan L. Flint; Terry L. Sohl

ContextIn addition to biodiversity conservation, California rangelands generate multiple ecosystem services including livestock production, drinking and irrigation water, and carbon sequestration. California rangeland ecosystems have experienced substantial conversion to residential land use and more intensive agriculture.ObjectivesTo understand the potential impacts to rangeland ecosystem services, we developed six spatially explicit (250 m) climate/land use change scenarios for the Central Valley of California and surrounding foothills consistent with three Intergovernmental Panel on Climate Change emission scenario narratives.MethodsWe quantified baseline and projected change in wildlife habitat, soil organic carbon (SOC), and water supply (recharge and runoff). For six case study watersheds we quantified the interactions of future development and changing climate on recharge, runoff and streamflow, and precipitation thresholds where dominant watershed hydrological processes shift through analysis of covariance.ResultsThe scenarios show that across the region, habitat loss is expected to occur predominantly in grasslands, primarily due to future development (up to a 37 % decline by 2100), however habitat loss in priority conservation errors will likely be due to cropland and hay/pasture expansion (up to 40 % by 2100). Grasslands in the region contain approximately 100 teragrams SOC in the top 20 cm, and up to 39 % of this SOC is subject to conversion by 2100. In dryer periods recharge processes typically dominate runoff. Future development lowers the precipitation value at which recharge processes dominate runoff, and combined with periods of drought, reduces the opportunity for recharge, especially on deep soils.ConclusionResults support the need for climate-smart land use planning that takes recharge areas into account, which will provide opportunities for water storage in dry years. Given projections for agriculture, more modeling is needed on feedbacks between agricultural expansion on rangelands and water supply.


Environmental Research Letters | 2016

Future land-use related water demand in California

Tamara S. Wilson; Benjamin M. Sleeter; D. Richard Cameron

Water shortages in California are a growing concern amidst ongoing drought, earlier spring snowmelt, projected future climate warming, and currently mandated water use restrictions. Increases in population and land use in coming decades will place additional pressure on already limited available water supplies. We used a state-and-transition simulation model to project future changes in developed (municipal and industrial) and agricultural land use to estimate associated water use demand from 2012 to 2062. Under current efficiency rates, total water use was projected to increase 1.8 billion cubic meters (+4.1%) driven primarily by urbanization and shifts to more water intensive crops. Only if currently mandated 25% reductions in municipal water use are continuously implemented would water demand in 2062 balance to water use levels in 2012. This is the first modeling effort of its kind to examine regional land-use related water demand incorporating historical trends of both developed and agricultural land uses.


Earth’s Future | 2017

Future scenarios of land change based on empirical data and demographic trends

Benjamin M. Sleeter; Tamara S. Wilson; Ethan Sharygin; Jason Sherba

Changes in land use and land cover (LULC) have important and fundamental interactions with the global climate system. Top-down global scale projections of land use change have been an important component of climate change research; however, their utility at local to regional scales is often limited. The goal of this study was to develop an approach for projecting changes in LULC based on land use histories and demographic trends. We developed a set of stochastic, empirical-based projections of LULC change for the state of California, for the period 2001–2100. Land use histories and demographic trends were used to project a “business-as-usual” (BAU) scenario and three population growth scenarios. For the BAU scenario, we projected developed lands would more than double by 2100. When combined with cultivated areas, we projected a 28% increase in anthropogenic land use by 2100. As a result, natural lands were projected to decline at a rate of 139 km2 yr−1; grasslands experienced the largest net decline, followed by shrublands and forests. The amount of cultivated land was projected to decline by approximately 10%; however, the relatively modest change masked large shifts between annual and perennial crop types. Under the three population scenarios, developed lands were projected to increase 40–90% by 2100. Our results suggest that when compared to the BAU projection, scenarios based on demographic trends may underestimate future changes in LULC. Furthermore, regardless of scenario, the spatial pattern of LULC change was likely to have the greatest negative impacts on rangeland ecosystems.


Climatic Change | 2017

Climate impacts on agricultural land use in the USA: the role of socio-economic scenarios

Jianhong E. Mu; Benjamin M. Sleeter; John T. Abatzoglou; John M. Antle

We examine the impacts of climate on net returns from crop and livestock production and the resulting impact on land-use change across the contiguous USA. We first estimate an econometric model to project effects of weather fluctuations on crop and livestock net returns and then use a semi-reduced form land-use share model to study agricultural land-use changes under future climate and socio-economic scenarios. Estimation results show that crop net returns are more sensitive to thermal and less sensitive to moisture variability than livestock net returns; other agricultural land uses substitute cropland use when 30-year averaged degree-days or precipitation are not beneficial for crop production. Under future climate and socio-economic scenarios, we project that crop and livestock net returns are both increasing, but with crop net returns increasing at a higher rate; cropland increases with declines of marginal and pastureland by the end of the twenty-first century. Projections also show that impacts of future climate on agricultural land uses are substantially different and a larger variation of land-use change is evident when socio-economic scenarios are incorporated into the climate impact analysis.


PLOS ONE | 2017

Mediterranean California’s water use future under multiple scenarios of developed and agricultural land use change

Tamara S. Wilson; Benjamin M. Sleeter; D. Richard Cameron

With growing demand and highly variable inter-annual water supplies, California’s water use future is fraught with uncertainty. Climate change projections, anticipated population growth, and continued agricultural intensification, will likely stress existing water supplies in coming decades. Using a state-and-transition simulation modeling approach, we examine a broad suite of spatially explicit future land use scenarios and their associated county-level water use demand out to 2062. We examined a range of potential water demand futures sampled from a 20-year record of historical (1992–2012) data to develop a suite of potential future land change scenarios, including low/high change scenarios for urbanization and agriculture as well as “lowest of the low” and “highest of the high” anthropogenic use. Future water demand decreased 8.3 billion cubic meters (Bm3) in the lowest of the low scenario and decreased 0.8 Bm3 in the low agriculture scenario. The greatest increased water demand was projected for the highest of the high land use scenario (+9.4 Bm3), high agricultural expansion (+4.6 Bm3), and high urbanization (+2.1 Bm3) scenarios. Overall, these scenarios show agricultural land use decisions will likely drive future demand more than increasing municipal and industrial uses, yet improved efficiencies across all sectors could lead to potential water use savings. Results provide water managers with information on diverging land use and water use futures, based on historical, observed land change trends and water use histories.


Carbon Balance and Management | 2015

Projecting the spatiotemporal carbon dynamics of the Greater Yellowstone Ecosystem from 2006 to 2050

Shengli Huang; Shuguang Liu; Jinxun Liu; Devendra Dahal; Claudia Young; Brian Davis; Terry L. Sohl; Todd J. Hawbaker; Benjamin M. Sleeter; Zhiliang Zhu

BackgroundClimate change and the concurrent change in wildfire events and land use comprehensively affect carbon dynamics in both spatial and temporal dimensions. The purpose of this study was to project the spatial and temporal aspects of carbon storage in the Greater Yellowstone Ecosystem (GYE) under these changes from 2006 to 2050. We selected three emission scenarios and produced simulations with the CENTURY model using three General Circulation Models (GCMs) for each scenario. We also incorporated projected land use change and fire occurrence into the carbon accounting.ResultsThe three GCMs showed increases in maximum and minimum temperature, but precipitation projections varied among GCMs. Total ecosystem carbon increased steadily from 7,942 gC/m2 in 2006 to 10,234 gC/m2 in 2050 with an annual rate increase of 53 gC/m2/year. About 56.6% and 27% of the increasing rate was attributed to total live carbon and total soil carbon, respectively. Net Primary Production (NPP) increased slightly from 260 gC/m2/year in 2006 to 310 gC/m2/year in 2050 with an annual rate increase of 1.22 gC/m2/year. Forest clear-cutting and fires resulted in direct carbon removal; however, the rate was low at 2.44 gC/m2/year during 2006–2050. The area of clear-cutting and wildfires in the GYE would account for 10.87% of total forested area during 2006–2050, but the predictive simulations demonstrated different spatial distributions in national forests and national parks.ConclusionsThe GYE is a carbon sink during 2006–2050. The capability of vegetation is almost double that of soil in terms of sequestering extra carbon. Clear-cutting and wildfires in GYE will affect 10.87% of total forested area, but direct carbon removal from clear-cutting and fires is 109.6 gC/m2, which accounts for only 1.2% of the mean ecosystem carbon level of 9,056 gC/m2, and thus is not significant.


Archive | 2013

Human Footprint Affects US Carbon Balance More Than Climate Change

Dominique Bachelet; Ken Ferschweiler; Tim Sheehan; Barry Baker; Benjamin M. Sleeter; Zhiliang Zhu

The MC2 model projects an overall increase in carbon capture in conterminous United States during the 21st century while also simulating a rise in fire causing much carbon loss. Carbon sequestration in soils is critical to prevent carbon losses from future disturbances, and we show that natural ecosystems store more carbon belowground than managed systems do. Natural and human-caused disturbances affect soil processes that shape ecosystem recovery and competitive interactions between native, exotics, and climate refugees. Tomorrows carbon budgets will depend on how land use, natural disturbances, and climate variability will interact and affect the balance between carbon capture and release.


Global Environmental Change-human and Policy Dimensions | 2012

Scenarios of land use and land cover change in the conterminous United States: Utilizing the special report on emission scenarios at ecoregional scales

Benjamin M. Sleeter; Terry L. Sohl; Michelle Bouchard; Ryan R. Reker; Christopher E. Soulard; William Acevedo; Glenn E. Griffith; Rachel R. Sleeter; Roger F. Auch; Kristi L. Sayler; Stephen Prisley; Zhiliang Zhu

Collaboration


Dive into the Benjamin M. Sleeter's collaboration.

Top Co-Authors

Avatar

Terry L. Sohl

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Zhiliang Zhu

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Tamara S. Wilson

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Jinxun Liu

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Christopher E. Soulard

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Todd J. Hawbaker

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Kristi L. Sayler

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Rachel R. Sleeter

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Paul C. Selmants

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Ryan R. Reker

United States Geological Survey

View shared research outputs
Researchain Logo
Decentralizing Knowledge