Christopher E. Soulard
United States Geological Survey
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Christopher E. Soulard.
Ecological Applications | 2014
Terry L. Sohl; Kristi L. Sayler; Michelle Bouchard; Ryan R. Reker; Aaron M. Friesz; Stacie L. Bennett; Benjamin M. Sleeter; Rachel R. Sleeter; Tamara S. Wilson; Christopher E. Soulard; Michelle Knuppe; Travis Van Hofwegen
Information on future land-use and land-cover (LULC) change is needed to analyze the impact of LULC change on ecological processes. The U.S. Geological Survey has produced spatially explicit, thematically detailed LULC projections for the conterminous United States. Four qualitative and quantitative scenarios of LULC change were developed, with characteristics consistent with the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES). The four quantified scenarios (A1B, A2, B1, and B2) served as input to the forecasting scenarios of land-use change (FORE-SCE) model. Four spatially explicit data sets consistent with scenario storylines were produced for the conterminous United States, with annual LULC maps from 1992 through 2100. The future projections are characterized by a loss of natural land covers in most scenarios, with corresponding expansion of anthropogenic land uses. Along with the loss of natural land covers, remaining natural land covers experience increased fragmentation under most scenarios, with only the B2 scenario remaining relatively stable in both the proportion of remaining natural land covers and basic fragmentation measures. Forest stand age was also modeled. By 2100, scenarios and ecoregions with heavy forest cutting had relatively lower mean stand ages compared to those with less forest cutting. Stand ages differed substantially between unprotected and protected forest lands, as well as between different forest classes. The modeled data were compared to the National Land Cover Database (NLCD) and other data sources to assess model characteristics. The consistent, spatially explicit, and thematically detailed LULC projections and the associated forest stand-age data layers have been used to analyze LULC impacts on carbon and greenhouse gas fluxes, biodiversity, climate and weather variability, hydrologic change, and other ecological processes.
Landscape Ecology | 2015
Kristin B. Byrd; Lorraine E. Flint; Pelayo Alvarez; Clyde F. Casey; Benjamin M. Sleeter; Christopher E. Soulard; Alan L. Flint; Terry L. Sohl
ContextIn addition to biodiversity conservation, California rangelands generate multiple ecosystem services including livestock production, drinking and irrigation water, and carbon sequestration. California rangeland ecosystems have experienced substantial conversion to residential land use and more intensive agriculture.ObjectivesTo understand the potential impacts to rangeland ecosystem services, we developed six spatially explicit (250 m) climate/land use change scenarios for the Central Valley of California and surrounding foothills consistent with three Intergovernmental Panel on Climate Change emission scenario narratives.MethodsWe quantified baseline and projected change in wildlife habitat, soil organic carbon (SOC), and water supply (recharge and runoff). For six case study watersheds we quantified the interactions of future development and changing climate on recharge, runoff and streamflow, and precipitation thresholds where dominant watershed hydrological processes shift through analysis of covariance.ResultsThe scenarios show that across the region, habitat loss is expected to occur predominantly in grasslands, primarily due to future development (up to a 37 % decline by 2100), however habitat loss in priority conservation errors will likely be due to cropland and hay/pasture expansion (up to 40 % by 2100). Grasslands in the region contain approximately 100 teragrams SOC in the top 20 cm, and up to 39 % of this SOC is subject to conversion by 2100. In dryer periods recharge processes typically dominate runoff. Future development lowers the precipitation value at which recharge processes dominate runoff, and combined with periods of drought, reduces the opportunity for recharge, especially on deep soils.ConclusionResults support the need for climate-smart land use planning that takes recharge areas into account, which will provide opportunities for water storage in dry years. Given projections for agriculture, more modeling is needed on feedbacks between agricultural expansion on rangelands and water supply.
Journal of Land Use Science | 2015
Christopher E. Soulard; Tamara S. Wilson
Open access to Landsat satellite data has enabled annual analyses of modern land-use and land-cover change (LULCC) for the Central California Valley ecoregion between 2005 and 2010. Our annual LULCC estimates capture landscape-level responses to water policy changes, climate, and economic instability. From 2005 to 2010, agriculture in the region fluctuated along with regulatory-driven changes in water allocation as well as persistent drought conditions. Grasslands and shrublands declined, while developed lands increased in former agricultural and grassland/shrublands. Development rates stagnated in 2007, coinciding with the onset of the historic foreclosure crisis in California and the global economic downturn. We utilized annual LULCC estimates to generate interval-based LULCC estimates (2000–2005 and 2005–2010) and extend existing 27 year interval-based land change monitoring through 2010. Resulting change data provides insights into the drivers of landscape change in the Central California Valley ecoregion and represents the first, continuous, 37 year mapping effort of its kind.
Remote Sensing | 2016
Christopher E. Soulard; Christine M. Albano; Miguel L. Villarreal; Jessica J. Walker
To assess how montane meadow vegetation recovered after a wildfire that occurred in Yosemite National Park, CA in 1996, Google Earth Engine image processing was applied to leverage the entire Landsat Thematic Mapper archive from 1985 to 2012. Vegetation greenness (normalized difference vegetation index (NDVI)) was summarized every 16 days across the 28-year Landsat time series for 26 meadows. Disturbance event detection was hindered by the subtle influence of low-severity fire on meadow vegetation. A hard break (August 1996) was identified corresponding to the Ackerson Fire, and monthly composites were used to compare NDVI values and NDVI trends within burned and unburned meadows before, immediately after, and continuously for more than a decade following the fire date. Results indicate that NDVI values were significantly lower at 95% confidence level for burned meadows following the fire date, yet not significantly lower at 95% confidence level in the unburned meadows. Burned meadows continued to exhibit lower monthly NDVI in the dormant season through 2012. Over the entire monitoring period, the negative-trending, dormant season NDVI slopes in the burned meadows were also significantly lower than unburned meadows at 90% confidence level. Lower than average NDVI values and slopes in the dormant season compared to unburned meadows, coupled with photographic evidence, strongly suggest that evergreen vegetation was removed from the periphery of some meadows after the fire. These analyses provide insight into how satellite imagery can be used to monitor low-severity fire effects on meadow vegetation.
Journal of Geophysical Research | 2017
Christine M. Albano; Michael D. Dettinger; Christopher E. Soulard
In the southwestern US, the meteorological phenomenon known as atmospheric rivers (ARs) has gained increasing attention due to its strong connections to floods, snowpacks and water supplies in the West Coast states. Relatively less is known about the ecological implications of ARs, particularly in the interior Southwest, where AR storms are less common. To address this gap, we compared a chronology of AR landfalls on the west coast between 1989-2011 and between 25-42.5°N, to annual metrics of the normalized difference vegetation index (NDVI; an indicator of vegetation productivity) and daily-resolution precipitation data to assess influences of AR-fed winter precipitation on vegetation productivity across the southwestern US. We mapped correlations between winter AR precipitation during landfalling ARs and 1) annual maximum NDVI and 2) area burned by large wildfires summarized by ecoregion during the same year as the landfalls and during the following year. Interannual variations of AR precipitation strongly influenced both NDVI and area burned by wildfire in some dryland ecoregions. The influence of ARs on dryland vegetation varied significantly depending on the latitude of landfall, with those ARs making landfall below 35 N latitude more strongly influencing these systems, and with effects observed as far as 1300 km from the landfall location. As climatologists’ understanding of the synoptic patterns associated with the occurrence of ARs continues to evolve, an increased understanding of how AR landfalls, in aggregate, influence vegetation productivity and associated wildfire activity in dryland ecosystems may provide opportunities to better predict ecological responses to climate and climate change.
Environmental Monitoring and Assessment | 2017
Christopher E. Soulard; William Acevedo; Warren B. Cohen; Zhiqiang Yang; Stephen V. Stehman; Janis L. Taylor
Several spatial forest disturbance datasets exist for the conterminous USA. The major problem with forest disturbance mapping is that variability between map products leads to uncertainty regarding the actual rate of disturbance. In this article, harmonized maps were produced from multiple data sources (i.e., Global Forest Change, LANDFIRE Vegetation Disturbance, National Land Cover Database, Vegetation Change Tracker, and Web-Enabled Landsat Data). The harmonization process involved fitting common class ontologies and determining spatial congruency to produce forest disturbance maps for four time intervals (1986–1992, 1992–2001, 2001–2006, and 2006–2011). Pixels mapped as disturbed for two or more datasets were labeled as disturbed in the harmonized maps. The primary advantage gained by harmonization was improvement in commission error rates relative to the individual disturbance products. Disturbance omission errors were high for both harmonized and individual forest disturbance maps due to underlying limitations in mapping subtle disturbances with Landsat classification algorithms. To enhance the value of the harmonized disturbance products, we used fire perimeter maps to add information on the cause of disturbance.
Global Environmental Change-human and Policy Dimensions | 2012
Benjamin M. Sleeter; Terry L. Sohl; Michelle Bouchard; Ryan R. Reker; Christopher E. Soulard; William Acevedo; Glenn E. Griffith; Rachel R. Sleeter; Roger F. Auch; Kristi L. Sayler; Stephen Prisley; Zhiliang Zhu
Environmental Monitoring and Assessment | 2011
Benjamin M. Sleeter; Tamara S. Wilson; Christopher E. Soulard; Jinxun Liu
Land | 2014
Tamara S. Wilson; Benjamin M. Sleeter; Rachel R. Sleeter; Christopher E. Soulard
Land Degradation & Development | 2016
Christopher E. Soulard; William Acevedo; Stephen V. Stehman; Owen P. Parker