Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin P. Sinder is active.

Publication


Featured researches published by Benjamin P. Sinder.


Journal of Bone and Mineral Research | 2013

Sclerostin antibody improves skeletal parameters in a Brtl/+ mouse model of osteogenesis imperfecta

Benjamin P. Sinder; Mary M. Eddy; Michael S. Ominsky; Joan C. Marini; Kenneth M. Kozloff

Osteogenesis imperfecta (OI) is a genetic bone dysplasia characterized by osteopenia and easy susceptibility to fracture. Symptoms are most prominent during childhood. Although antiresorptive bisphosphonates have been widely used to treat pediatric OI, controlled trials show improved vertebral parameters but equivocal effects on long‐bone fracture rates. New treatments for OI are needed to increase bone mass throughout the skeleton. Sclerostin antibody (Scl‐Ab) therapy is potently anabolic in the skeleton by stimulating osteoblasts via the canonical wnt signaling pathway, and may be beneficial for treating OI. In this study, Scl‐Ab therapy was investigated in mice heterozygous for a typical OI‐causing Gly→Cys substitution in col1a1. Two weeks of Scl‐Ab successfully stimulated osteoblast bone formation in a knock‐in model for moderately severe OI (Brtl/+) and in WT mice, leading to improved bone mass and reduced long‐bone fragility. Image‐guided nanoindentation revealed no alteration in local tissue mineralization dynamics with Scl‐Ab. These results contrast with previous findings of antiresorptive efficacy in OI both in mechanism and potency of effects on fragility. In conclusion, short‐term Scl‐Ab was successfully anabolic in osteoblasts harboring a typical OI‐causing collagen mutation and represents a potential new therapy to improve bone mass and reduce fractures in pediatric OI.


Journal of Bone and Mineral Research | 2015

Macrophages: Their Emerging Roles in Bone

Benjamin P. Sinder; Allison R. Pettit; Laurie K. McCauley

Macrophages are present in nearly all tissues and are critical for development, homeostasis, and regeneration. Resident tissue macrophages of bone, termed osteal macrophages, are recently classified myeloid cells that are distinct from osteoclasts. Osteal macrophages are located immediately adjacent to osteoblasts, regulate bone formation, and play diverse roles in skeletal homeostasis. Genetic or pharmacological modulation of macrophages in vivo results in significant bone phenotypes, and these phenotypes depend on which macrophage subsets are altered. Macrophages are also key mediators of osseous wound healing and fracture repair, with distinct roles at various stages of the repair process. A central function of macrophages is their phagocytic ability. Each day, billions of cells die in the body and efferocytosis (phagocytosis of apoptotic cells) is a critical process in both clearing dead cells and recruitment of replacement progenitor cells to maintain homeostasis. Recent data suggest a role for efferocytosis in bone biology and these new mechanisms are outlined. Finally, although macrophages have an established role in primary tumors, emerging evidence suggests that macrophages in bone support cancers which preferentially metastasize to the skeleton. Collectively, this developing area of osteoimmunology raises new questions and promises to provide novel insights into pathophysiologic conditions as well as therapeutic and regenerative approaches vital for skeletal health.


Journal of Biological Chemistry | 2013

The Soluble Interleukin-6 Receptor Is a Mediator of Hematopoietic and Skeletal Actions of Parathyroid Hormone

Sun Wook Cho; Flavia Q. Pirih; Amy J. Koh; Megan N. Michalski; Matthew R. Eber; Kathryn Ritchie; Benjamin P. Sinder; Seojin Oh; Saja A. Al-Dujaili; Joon Lee; Kenneth M. Kozloff; Theodora E. Danciu; Thomas J. Wronski; Laurie K. McCauley

Background: IL-6 signaling plays a role in immune and skeletal systems. Results: sIL-6R mediated PTH-dependent hematopoietic cell expansions and blocking sIL-6R reduced PTH anabolic actions in mice. Conclusion: sIL-6R is a mediator of PTH hematopoietic actions in marrow and anabolic actions in bone. Significance: Novel orphan sIL-6R functions support PTH actions in bone and bone marrow. Both PTH and IL-6 signaling play pivotal roles in hematopoiesis and skeletal biology, but their interdependence is unclear. The purpose of this study was to evaluate the effect of IL-6 and soluble IL-6 receptor (sIL-6R) on hematopoietic and skeletal actions of PTH. In the bone microenvironment, PTH stimulated sIL-6R protein levels in primary osteoblast cultures in vitro and bone marrow in vivo in both IL-6+/+ and IL-6−/− mice. PTH-mediated hematopoietic cell expansion was attenuated in IL-6−/− compared with IL-6+/+ bone marrow, whereas sIL-6R treatment amplified PTH actions in IL-6−/− earlier than IL-6+/+ marrow cultures. Blocking sIL-6R signaling with sgp130 (soluble glycoprotein 130 receptor) inhibited PTH-dependent hematopoietic cell expansion in IL-6−/− marrow. In the skeletal system, although intermittent PTH administration to IL-6+/+ and IL-6−/− mice resulted in similar anabolic actions, blocking sIL-6R significantly attenuated PTH anabolic actions. sIL-6R showed no direct effects on osteoblast proliferation or differentiation in vitro; however, it up-regulated myeloid cell expansion and production of the mesenchymal stem cell recruiting agent, TGF-β1 in the bone marrow microenvironment. Collectively, sIL-6R demonstrated orphan function and mediated PTH anabolic actions in bone in association with support of myeloid lineage cells in the hematopoietic system.


Journal of Cellular Biochemistry | 2013

The effects of zoledronic acid in the bone and vasculature support of hematopoietic stem cell niches

Fabiana N. Soki; Xin Li; Janice E. Berry; Amy J. Koh; Benjamin P. Sinder; Xu Qian; Kenneth M. Kozloff; Russell S. Taichman; Laurie K. McCauley

Hematopoietic stem cells (HSC) are maintained in a tightly regulated bone microenvironment constituted by a rich milieu of cells. Bone cells such as osteoblasts are associated with niche maintenance as regulators of the endosteal microenvironment. Bone remodeling also plays a role in HSC mobilization although it is poorly defined. The effects of zoledronic acid (ZA), a potent bisphosphonate that inhibits bone resorption, were investigated on bone marrow cell populations focusing on HSCs, and the endosteal and vascular niches in bone. ZA treatment significantly increased bone volume and HSCs in both young and adult mice (4 week and 4 month old, respectively). ZA increased vessel numbers with no overall change in vascular volume in bones of young and had no effect on vasculature in adult mice. Since both young and adult mice had increased HSCs and bone mass with differing vasculature responses, this suggests that ZA indirectly supports HSCs via the osteoblastic niche and not the vascular niche. Additionally, gene expression in Lin‐ cells demonstrated increased expression of self‐renewal‐related genes Bmi1 and Ink4a suggesting a role of ZA in the modulation of cell commitment and differentiation toward a long‐term self‐renewing cell. Genes that support the osteoblastic niche, BMP2 and BMP6 were also augmented in ZA treated mice. In conclusion, ZA‐induced HSC expansion occurs independent of the vascular niche via indirect modulation of the osteoblastic niche. J. Cell. Biochem. 114: 67–78, 2012.


Journal of Bone and Mineral Research | 2012

Proteoglycan 4: A Dynamic Regulator of Skeletogenesis and Parathyroid Hormone Skeletal Anabolism

Chad M. Novince; Megan N. Michalski; Amy J. Koh; Benjamin P. Sinder; Payam Entezami; Matthew R. Eber; Glenda J. Pettway; Thomas J. Rosol; Thomas J. Wronski; Kenneth M. Kozloff; Laurie K. McCauley

Proteoglycan 4 (Prg4), known for its lubricating and protective actions in joints, is a strong candidate regulator of skeletal homeostasis and parathyroid hormone (PTH) anabolism. Prg4 is a PTH‐responsive gene in bone and liver. Prg4 null mutant mice were used to investigate the impact of proteoglycan 4 on skeletal development, remodeling, and PTH anabolic actions. Young Prg4 mutant and wild‐type mice were administered intermittent PTH(1–34) or vehicle daily from 4 to 21 days. Young Prg4 mutant mice had decreased growth plate hypertrophic zones, trabecular bone, and serum bone formation markers versus wild‐type mice, but responded with a similar anabolic response to PTH. Adult Prg4 mutant and wild‐type mice were administered intermittent PTH(1–34) or vehicle daily from 16 to 22 weeks. Adult Prg4 mutant mice had decreased trabecular and cortical bone, and blunted PTH‐mediated increases in bone mass. Joint range of motion and animal mobility were lower in adult Prg4 mutant versus wild‐type mice. Adult Prg4 mutant mice had decreased marrow and liver fibroblast growth factor 2 (FGF‐2) mRNA and reduced serum FGF‐2, which were normalized by PTH. A single dose of PTH decreased the PTH/PTHrP receptor (PPR), and increased Prg4 and FGF‐2 to a similar extent in liver and bone. Proteoglycan 4 supports endochondral bone formation and the attainment of peak trabecular bone mass, and appears to support skeletal homeostasis indirectly by protecting joint function. Bone‐ and liver‐derived FGF‐2 likely regulate proteoglycan 4 actions supporting trabeculae formation. Blunted PTH anabolic responses in adult Prg4 mutant mice are associated with altered biomechanical impact secondary to joint failure.


Bone | 2016

Effect of anti-sclerostin therapy and osteogenesis imperfecta on tissue-level properties in growing and adult mice while controlling for tissue age

Benjamin P. Sinder; William R. Lloyd; Joseph D. Salemi; Joan C. Marini; Michael D. Morris; Kenneth M. Kozloff

Bone composition and biomechanics at the tissue-level are important contributors to whole bone strength. Sclerostin antibody (Scl-Ab) is a candidate anabolic therapy for the treatment of osteoporosis that increases bone formation, bone mass, and bone strength in animal studies, but its effect on bone quality at the tissue-level has received little attention. Pre-clinical studies of Scl-Ab have recently expanded to include diseases with altered collagen and material properties such as osteogenesis imperfecta (OI). The purpose of this study was to investigate the role of Scl-Ab on bone quality by determining bone material composition and tissue-level mechanical properties in normal wild type (WT) tissue, as well as mice with a typical OI Gly➔Cys mutation (Brtl/+) in type I collagen. Rapidly growing (3-week-old) and adult (6-month-old) WT and Brtl/+ mice were treated for 5weeks with Scl-Ab. Fluorescent guided tissue-level bone composition analysis (Raman spectroscopy) and biomechanical testing (nanoindentation) were performed at multiple tissue ages. Scl-Ab increased mineral to matrix in adult WT and Brtl/+ at tissue ages of 2-4wks. However, no treatment related changes were observed in mineral to matrix levels at mid-cortex, and elastic modulus was not altered by Scl-Ab at any tissue age. Increased mineral-to-matrix was phenotypically observed in adult Brtl/+ OI mice (at tissue ages>3wks) and rapidly growing Brtl/+ (at tissue ages>4wks) mice compared to WT. At identical tissue ages defined by fluorescent labels, adult mice had generally lower mineral to matrix ratios and a greater elastic modulus than rapidly growing mice, demonstrating that bone matrix quality can be influenced by animal age and tissue age alike. In summary, these data suggest that Scl-Ab alters the matrix chemistry of newly formed bone while not affecting the elastic modulus, induces similar changes between Brtl/+ and WT mice, and provides new insight into the interaction between tissue age and animal age on bone quality.


Bone | 2016

Single dose of bisphosphonate preserves gains in bone mass following cessation of sclerostin antibody in Brtl/+ osteogenesis imperfecta model

Joseph E. Perosky; Basma Khoury; Terese N. Jenks; Ferrous S. Ward; Kai Cortright; Bethany Meyer; David K. Barton; Benjamin P. Sinder; Joan C. Marini; Kenneth M. Kozloff

Sclerostin antibody has demonstrated a bone-forming effect in pre-clinical models of osteogenesis imperfecta, where mutations in collagen or collagen-associated proteins often result in high bone fragility in pediatric patients. Cessation studies in osteoporotic patients have demonstrated that sclerostin antibody, like intermittent PTH treatment, requires sequential anti-resorptive therapy to preserve the anabolic effects in adult populations. However, the persistence of anabolic gains from either drug has not been explored clinically in OI, or in any animal model. To determine whether cessation of sclerostin antibody therapy in a growing OI skeleton requires sequential anti-resorptive treatment to preserve anabolic gains in bone mass, we treated 3week old Brtl/+ and wild type mice for 5weeks with SclAb, and then withdrew treatment for an additional 6weeks. Trabecular bone loss was evident following cessation, but was preserved in a dose-dependent manner with single administration of pamidronate at the time of cessation. In vivo longitudinal near-infrared optical imaging of cathepsin K activation in the proximal tibia suggests an anti-resorptive effect of both SclAb and pamidronate which is reversed after three weeks of cessation. Cortical bone was considerably less susceptible to cessation effects, and showed no structural or functional deficits in the absence of pamidronate during this cessation period. In conclusion, while SclAb induces a considerable anabolic gain in the rapidly growing Brtl/+ murine model of OI, a single sequential dose of antiresorptive drug is required to maintain bone mass at trabecular sites for 6weeks following cessation.


Journal of Bone and Mineral Research | 2017

Bone Mass is Compromised by the Chemotherapeutic Trabectedin in Association with Effects on Osteoblasts and Macrophage Efferocytosis

Benjamin P. Sinder; Laura Zweifler; Amy J. Koh; Megan N. Michalski; Lorenz C. Hofbauer; Jose Ignacio Aguirre; Hernan Roca; Laurie K. McCauley

Macrophages have established roles supporting bone formation. Despite their professional phagocytic nature, the role of macrophage phagocytosis in bone homeostasis is not well understood. Interestingly, apoptosis is a pivotal feature of cellular regulation and the primary fate of osteoblasts is apoptosis. Efferocytosis (phagocytosis of apoptotic cells) is a key physiologic process for the homeostasis of many tissues, and is associated with expression of osteoinductive factors. To test effects of macrophage depletion and compromised phagocytosis on bone, 16‐week‐old male C57BL/6J mice were treated with trabectedin—a chemotherapeutic with established anti‐macrophage effects. Trabectedin treatment reduced F4/80+ and CD68+ macrophages in the bone marrow as assessed by flow cytometry, osteal macrophages near the bone surface, and macrophage viability in vitro. Trabectedin treatment significantly reduced marrow gene expression of key phagocytic factors (Mfge8, Mrc1), and macrophages from treated mice had a reduced ability to phagocytose apoptotic mimicry beads. Macrophages cultured in vitro and treated with trabectedin displayed reduced efferocytosis of apoptotic osteoblasts. Moreover, efferocytosis increased macrophage osteoinductive TGF‐β production and this increase was inhibited by trabectedin. Long‐term (6‐week) treatment of 16‐week‐old C57BL/6J mice with trabectedin significantly reduced trabecular BV/TV and cortical BMD. Although trabectedin reduced osteoclast numbers in vitro, osteoclast surface in vivo was not altered. Trabectedin treatment reduced serum P1NP as well as MS/BS and BFR/BS, and inhibited mineralization and Runx2 gene expression of osteoblast cultures. Finally, intermittent PTH 1‐34 (iPTH) treatment was administered in combination with trabectedin, and iPTH increased trabecular bone volume fraction (BV/TV) in trabectedin‐treated mice. Collectively, the data support a model whereby trabectedin significantly reduces bone mass due to compromised macrophages and efferocytosis, but also due to direct effects on osteoblasts. This data has immediate clinical relevance in light of increasing use of trabectedin in oncology.


Journal of Orthopaedic Research | 2013

Impact of proteoglycan-4 and parathyroid hormone on articular cartilage.

Chad M. Novince; Payam Entezami; Christopher G. Wilson; Jason Wang; Seo Oh; Amy J. Koh; Megan N. Michalski; Benjamin P. Sinder; Kenneth M. Kozloff; Russell S. Taichman; Laurie K. McCauley

Proteoglycan‐4 (Prg4) protects synovial joints from arthropathic changes by mechanisms that are incompletely understood. Parathyroid hormone (PTH), known for its anabolic actions in bone, increases Prg4 expression and has been reported to inhibit articular cartilage degeneration in arthropathic joints. To investigate the effect of Prg4 and PTH on articular cartilage, 16‐week‐old Prg4 mutant and wild‐type mice were treated with intermittent PTH (1–34) or vehicle control daily for six weeks. Analyses included histology of the knee joint, micro‐CT of the distal femur, and serum biochemical analysis of type II collagen fragments (CTX‐II). Compared to wild‐type littermates, Prg4 mutant mice had an acellular layer of material lining the surfaces of the articular cartilage and menisci, increased articular cartilage degradation, increased serum CTX‐II concentrations, decreased articular chondrocyte apoptosis, increased synovium SDF‐1 expression, and irregularly contoured subchondral bone. PTH‐treated Prg4 mutant mice developed a secondary deposit overlaying the acellular layer of material lining the joint surfaces, but PTH‐treatment did not alter signs of articular cartilage degeneration in Prg4 mutant mice. The increased joint SDF‐1 levels and irregular subchondral bone found in Prg4 mutant mice introduce novel candidate mechanisms by which Prg4 protects articular cartilage.


Proceedings of SPIE | 2015

Tissue level material composition and mechanical properties in Brtl/+ mouse model of Osteogenesis Imperfecta after sclerostin antibody treatment

William R. Lloyd; Benjamin P. Sinder; Joseph D. Salemi; Michael S. Ominsky; Joan C. Marini; Michael D. Morris; Kenneth M. Kozloff

Osteogenesis imperfecta (OI) is a genetic disorder resulting in defective collagen or collagen-associated proteins and fragile, brittle bones. To date, therapies to improve OI bone mass, such as bisphosphonates, have increased bone mass in the axial skeleton of OI patients, but have shown limited effects at reducing long bone fragility. Sclerostin antibody (Scl- Ab), currently in clinical trials for osteoporosis, stimulates bone formation and may have the potential to reduce long bone fracture rates in OI patients. Scl-Ab has been investigated as an anabolic therapy for OI in the Brtl/+ mouse model of moderately severe Type IV OI. While Scl-Ab increases long bone mass in the Brtl/+ mouse, it is not known whether material properties and composition changes also occur. Here, we report on the effects of Scl-Ab on wild type and Brtl/+ young (3 week) and adult (6 month) male mice. Scl-Ab was administered over 5 weeks (25mg/kg, 2x/week). Raman microspectroscopy and nanoindentation are used for bone composition and biomechanical bone property measurements in excised bone. Fluorescent labels (calcein and alizarin) at 4 time points over the entire treatment period are used to enable measurements at specific tissue age. Differences between wild type and Brtl/+ groups included variations in the mineral and matrix lattices, particularly the phosphate v1, carbonate v1, and the v(CC) proline and hydroxyproline stretch vibrations. Results of Raman spectroscopy corresponded to nanoindentation findings which indicated that old bone (near midcortex) is stiffer (higher elastic modulus) than new bone. We compare and contrast mineral to matrix and carbonate to phosphate ratios in young and adult mice with and without treatment.

Collaboration


Dive into the Benjamin P. Sinder's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy J. Koh

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Joan C. Marini

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hernan Roca

University of Michigan

View shared research outputs
Researchain Logo
Decentralizing Knowledge