Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin P. Tu is active.

Publication


Featured researches published by Benjamin P. Tu.


Journal of Cell Biology | 2004

Oxidative protein folding in eukaryotes: mechanisms and consequences

Benjamin P. Tu; Jonathan S. Weissman

The endoplasmic reticulum (ER) provides an environment that is highly optimized for oxidative protein folding. Rather than relying on small molecule oxidants like glutathione, it is now clear that disulfide formation is driven by a protein relay involving Ero1, a novel conserved FAD-dependent enzyme, and protein disulfide isomerase (PDI); Ero1 is oxidized by molecular oxygen and in turn acts as a specific oxidant of PDI, which then directly oxidizes disulfide bonds in folding proteins. While providing a robust driving force for disulfide formation, the use of molecular oxygen as the terminal electron acceptor can lead to oxidative stress through the production of reactive oxygen species and oxidized glutathione. How Ero1p distinguishes between the many different PDI-related proteins and how the cell minimizes the effects of oxidative damage from Ero1 remain important open questions.


Science | 2005

Logic of the Yeast Metabolic Cycle: Temporal Compartmentalization of Cellular Processes

Benjamin P. Tu; Andrzej Kudlicki; Maga Rowicka; Steven L. McKnight

Budding yeast grown under continuous, nutrient-limited conditions exhibit robust, highly periodic cycles in the form of respiratory bursts. Microarray studies reveal that over half of the yeast genome is expressed periodically during these metabolic cycles. Genes encoding proteins having a common function exhibit similar temporal expression patterns, and genes specifying functions associated with energy and metabolism tend to be expressed with exceptionally robust periodicity. Essential cellular and metabolic events occur in synchrony with the metabolic cycle, demonstrating that key processes in a simple eukaryotic cell are compartmentalized in time.


Molecular Cell | 2002

The FAD- and O2-Dependent Reaction Cycle of Ero1-Mediated Oxidative Protein Folding in the Endoplasmic Reticulum

Benjamin P. Tu; Jonathan S. Weissman

The endoplasmic reticulum (ER) supports disulfide formation through an essential protein relay involving Ero1p and protein disulfide isomerase (PDI). We find that in addition to having a tightly associated flavin adenine dinucleotide (FAD) moiety, yeast Ero1p is highly responsive to small changes in physiological levels of free FAD. This sensitivity underlies the dependence of oxidative protein folding on cellular FAD levels. FAD is synthesized in the cytosol but can readily enter the ER lumen and promote Ero1p-catalyzed oxidation. Ero1p then uses molecular oxygen as its preferred terminal electron acceptor. Thus Ero1p directly couples disulfide formation to the consumption of molecular oxygen, but its activity is modulated by free lumenal FAD levels, potentially linking disulfide formation to a cells nutritional or metabolic status.


Molecular Cell | 2011

Acetyl-CoA Induces Cell Growth and Proliferation by Promoting the Acetylation of Histones at Growth Genes

Ling Cai; Benjamin M. Sutter; Bing Li; Benjamin P. Tu

The decision by a cell to enter a round of growth and division must be intimately coordinated with nutrient availability and its metabolic state. These metabolic and nutritional requirements, and the mechanisms by which they induce cell growth and proliferation, remain poorly understood. Herein, we report that acetyl-CoA is the downstream metabolite of carbon sources that represents a critical metabolic signal for growth and proliferation. Upon entry into growth, intracellular acetyl-CoA levels increase substantially and consequently induce the Gcn5p/SAGA-catalyzed acetylation of histones at genes important for growth, thereby enabling their rapid transcription and commitment to growth. Thus, acetyl-CoA functions as a carbon-source rheostat that signals the initiation of the cellular growth program by promoting the acetylation of histones specifically at growth genes.


Cell Metabolism | 2012

Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse, human glioblastomas in the mouse brain in vivo

Isaac Marin-Valencia; Chendong Yang; Tomoyuki Mashimo; Steve K. Cho; Hyeonman Baek; Xiao Li Yang; Kartik N. Rajagopalan; Melissa Maddie; Vamsidhara Vemireddy; Zhenze Zhao; Ling Cai; Levi B. Good; Benjamin P. Tu; Kimmo J. Hatanpaa; Bruce Mickey; José M. Matés; Juan M. Pascual; Elizabeth A. Maher; Craig R. Malloy; Ralph J. DeBerardinis; Robert M. Bachoo

Dysregulated metabolism is a hallmark of cancer cell lines, but little is known about the fate of glucose and other nutrients in tumors growing in their native microenvironment. To study tumor metabolism in vivo, we used an orthotopic mouse model of primary human glioblastoma (GBM). We infused (13)C-labeled nutrients into mice bearing three independent GBM lines, each with a distinct set of mutations. All three lines displayed glycolysis, as expected for aggressive tumors. They also displayed unexpected metabolic complexity, oxidizing glucose via pyruvate dehydrogenase and the citric acid cycle, and using glucose to supply anaplerosis and other biosynthetic activities. Comparing the tumors to surrounding brain revealed obvious metabolic differences, notably the accumulation of a large glutamine pool within the tumors. Many of these same activities were conserved in cells cultured ex vivo from the tumors. Thus GBM cells utilize mitochondrial glucose oxidation during aggressive tumor growth in vivo.


Science | 2007

Restriction of DNA Replication to the Reductive Phase of the Metabolic Cycle Protects Genome Integrity

Zheng Chen; Elizabeth Odstrcil; Benjamin P. Tu; Steven L. McKnight

When prototrophic yeast cells are cultured under nutrient-limited conditions that mimic growth in the wild, rather than in the high-glucose solutions used in most laboratory studies, they exhibit a robustly periodic metabolic cycle. Over a cycle of 4 to 5 hours, yeast cells rhythmically alternate between glycolysis and respiration. The cell division cycle is tightly constrained to the reductive phase of this yeast metabolic cycle, with DNA replication taking place only during the glycolytic phase. We show that cell cycle mutants impeded in metabolic cycle–directed restriction of cell division exhibit substantial increases in spontaneous mutation rate. In addition, disruption of the gene encoding a DNA checkpoint kinase that couples the cell division cycle to the circadian cycle abolishes synchrony of the metabolic and cell cycles. Thus, circadian, metabolic, and cell division cycles may be coordinated similarly as an evolutionarily conserved means of preserving genome integrity.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Cyclic changes in metabolic state during the life of a yeast cell

Benjamin P. Tu; Rachel E. Mohler; Jessica Liu; Kenneth M. Dombek; Elton T. Young; Robert E. Synovec; Steven L. McKnight

Budding yeast undergo robust oscillations in oxygen consumption during continuous growth in a nutrient-limited environment. Using liquid chromatography-mass spectrometry and comprehensive 2D gas chromatography-mass spectrometry-based metabolite profiling methods, we have determined that the intracellular concentrations of many metabolites change periodically as a function of these metabolic cycles. These results reveal the logic of cellular metabolism during different phases of the life of a yeast cell. They may further indicate that oscillation in the abundance of key metabolites might help control the temporal regulation of cellular processes and the establishment of a cycle. Such oscillations in metabolic state might occur during the course of other biological cycles.


Nature Reviews Molecular Cell Biology | 2006

Metabolic cycles as an underlying basis of biological oscillations

Benjamin P. Tu; Steven L. McKnight

The evolutionary origins of periodic phenomena in biology, such as the circadian cycle, the hibernation cycle and the sleep–wake cycle, remain a mystery. We discuss the concept of temporal compartmentalization of metabolism that takes place during such cycles, and suggest that cyclic changes in a cells metabolic state might be a fundamental driving force for such biological oscillations.


Cell | 2013

Methionine inhibits autophagy and promotes growth by inducing the SAM-responsive methylation of PP2A.

Benjamin M. Sutter; Xi Wu; Sunil Laxman; Benjamin P. Tu

Autophagy is a process of cellular self-digestion induced by various forms of starvation. Although nitrogen deficit is a common trigger, some yeast cells induce autophagy upon switch from a rich to minimal media without nitrogen starvation. We show that the amino acid methionine is sufficient to inhibit such non-nitrogen-starvation (NNS)-induced autophagy. Methionine boosts synthesis of the methyl donor, S-adenosylmethionine (SAM). SAM inhibits autophagy and promotes growth through the action of the methyltransferase Ppm1p, which modifies the catalytic subunit of PP2A in tune with SAM levels. Methylated PP2A promotes dephosphorylation of Npr2p, a component of a conserved complex that regulates NNS autophagy and other growth-related processes. Thus, methionine and SAM levels represent a critical gauge of amino acid availability that is sensed via the methylation of PP2A to reciprocally regulate cell growth and autophagy.


Molecular Cell | 2012

Direct regulation of GTP homeostasis by (p)ppGpp: A critical component of viability and stress resistance

Allison Kriel; Alycia N. Bittner; Sok Ho Kim; Kuanqing Liu; Ashley K. Tehranchi; Winnie Y. Zou; Samantha Rendon; Rui Chen; Benjamin P. Tu; Jue D. Wang

Cells constantly adjust their metabolism in response to environmental conditions, yet major mechanisms underlying survival remain poorly understood. We discover a posttranscriptional mechanism that integrates starvation response with GTP homeostasis to allow survival, enacted by the nucleotide (p)ppGpp, a key player in bacterial stress response and persistence. We reveal that (p)ppGpp activates global metabolic changes upon starvation, allowing survival by regulating GTP. Combining metabolomics with biochemical demonstrations, we find that (p)ppGpp directly inhibits the activities of multiple GTP biosynthesis enzymes. This inhibition results in robust and rapid GTP regulation in Bacillus subtilis, which we demonstrate is essential to maintaining GTP levels within a range that supports viability even in the absence of starvation. Correspondingly, without (p)ppGpp, gross GTP dysregulation occurs, revealing a vital housekeeping function of (p)ppGpp; in fact, loss of (p)ppGpp results in death from rising GTP, a severe and previously unknown consequence of GTP dysfunction.

Collaboration


Dive into the Benjamin P. Tu's collaboration.

Top Co-Authors

Avatar

Ling Cai

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Steven L. McKnight

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Sunil Laxman

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Benjamin M. Sutter

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lei Shi

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Chen

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ralph J. DeBerardinis

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Zhiguang Huang

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Andrzej Kudlicki

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge