Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ralph J. DeBerardinis is active.

Publication


Featured researches published by Ralph J. DeBerardinis.


Cell Metabolism | 2008

The Biology of Cancer: Metabolic Reprogramming Fuels Cell Growth and Proliferation

Ralph J. DeBerardinis; Julian J. Lum; Georgia Hatzivassiliou; Craig B. Thompson

Cell proliferation requires nutrients, energy, and biosynthetic activity to duplicate all macromolecular components during each passage through the cell cycle. It is therefore not surprising that metabolic activities in proliferating cells are fundamentally different from those in nonproliferating cells. This review examines the idea that several core fluxes, including aerobic glycolysis, de novo lipid biosynthesis, and glutamine-dependent anaplerosis, form a stereotyped platform supporting proliferation of diverse cell types. We also consider regulation of these fluxes by cellular mediators of signal transduction and gene expression, including the phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR system, hypoxia-inducible factor 1 (HIF-1), and Myc, during physiologic cell proliferation and tumorigenesis.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis

Ralph J. DeBerardinis; Anthony Mancuso; Evgueni Daikhin; Ilana Nissim; Marc Yudkoff; Suzanne Wehrli; Craig B. Thompson

Tumor cell proliferation requires rapid synthesis of macromolecules including lipids, proteins, and nucleotides. Many tumor cells exhibit rapid glucose consumption, with most of the glucose-derived carbon being secreted as lactate despite abundant oxygen availability (the Warburg effect). Here, we used 13C NMR spectroscopy to examine the metabolism of glioblastoma cells exhibiting aerobic glycolysis. In these cells, the tricarboxylic acid (TCA) cycle was active but was characterized by an efflux of substrates for use in biosynthetic pathways, particularly fatty acid synthesis. The success of this synthetic activity depends on activation of pathways to generate reductive power (NADPH) and to restore oxaloacetate for continued TCA cycle function (anaplerosis). Surprisingly, both these needs were met by a high rate of glutamine metabolism. First, conversion of glutamine to lactate (glutaminolysis) was rapid enough to produce sufficient NADPH to support fatty acid synthesis. Second, despite substantial mitochondrial pyruvate metabolism, pyruvate carboxylation was suppressed, and anaplerotic oxaloacetate was derived from glutamine. Glutamine catabolism was accompanied by secretion of alanine and ammonia, such that most of the amino groups from glutamine were lost from the cell rather than incorporated into other molecules. These data demonstrate that transformed cells exhibit a high rate of glutamine consumption that cannot be explained by the nitrogen demand imposed by nucleotide synthesis or maintenance of nonessential amino acid pools. Rather, glutamine metabolism provides a carbon source that facilitates the cells ability to use glucose-derived carbon and TCA cycle intermediates as biosynthetic precursors.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction.

David R. Wise; Ralph J. DeBerardinis; Anthony Mancuso; Nabil Sayed; Xiao Yong Zhang; Harla K. Pfeiffer; Ilana Nissim; Evgueni Daikhin; Marc Yudkoff; Steven B. McMahon; Craig B. Thompson

Mammalian cells fuel their growth and proliferation through the catabolism of two main substrates: glucose and glutamine. Most of the remaining metabolites taken up by proliferating cells are not catabolized, but instead are used as building blocks during anabolic macromolecular synthesis. Investigations of phosphoinositol 3-kinase (PI3K) and its downstream effector AKT have confirmed that these oncogenes play a direct role in stimulating glucose uptake and metabolism, rendering the transformed cell addicted to glucose for the maintenance of survival. In contrast, less is known about the regulation of glutamine uptake and metabolism. Here, we report that the transcriptional regulatory properties of the oncogene Myc coordinate the expression of genes necessary for cells to engage in glutamine catabolism that exceeds the cellular requirement for protein and nucleotide biosynthesis. A consequence of this Myc-dependent glutaminolysis is the reprogramming of mitochondrial metabolism to depend on glutamine catabolism to sustain cellular viability and TCA cycle anapleurosis. The ability of Myc-expressing cells to engage in glutaminolysis does not depend on concomitant activation of PI3K or AKT. The stimulation of mitochondrial glutamine metabolism resulted in reduced glucose carbon entering the TCA cycle and a decreased contribution of glucose to the mitochondrial-dependent synthesis of phospholipids. These data suggest that oncogenic levels of Myc induce a transcriptional program that promotes glutaminolysis and triggers cellular addiction to glutamine as a bioenergetic substrate.


Cancer Research | 2007

Systemic Treatment with the Antidiabetic Drug Metformin Selectively Impairs p53-Deficient Tumor Cell Growth

Monica Buzzai; Russell G. Jones; Ravi K. Amaravadi; Julian J. Lum; Ralph J. DeBerardinis; Fangping Zhao; Benoit Viollet; Craig B. Thompson

The effect of the antidiabetic drug metformin on tumor growth was investigated using the paired isogenic colon cancer cell lines HCT116 p53(+/+) and HCT116 p53(-/-). Treatment with metformin selectively suppressed the tumor growth of HCT116 p53(-/-) xenografts. Following treatment with metformin, we detected increased apoptosis in p53(-/-) tumor sections and an enhanced susceptibility of p53(-/-) cells to undergo apoptosis in vitro when subject to nutrient deprivation. Metformin is proposed to function in diabetes treatment as an indirect activator of AMP-activated protein kinase (AMPK). Treatment with AICAR, another AMPK activator, also showed a selective ability to inhibit p53(-/-) tumor growth in vivo. In the presence of either of the two drugs, HCT116 p53(+/+) cells, but not HCT116 p53(-/-) cells, activated autophagy. A similar p53-dependent induction of autophagy was observed when nontransformed mouse embryo fibroblasts were treated. Treatment with either metformin or AICAR also led to enhanced fatty acid beta-oxidation in p53(+/+) MEFs, but not in p53(-/-) MEFs. However, the magnitude of induction was significantly lower in metformin-treated cells, as metformin treatment also suppressed mitochondrial electron transport. Metformin-treated cells compensated for this suppression of oxidative phosphorylation by increasing their rate of glycolysis in a p53-dependent manner. Together, these data suggest that metformin treatment forces a metabolic conversion that p53(-/-) cells are unable to execute. Thus, metformin is selectively toxic to p53-deficient cells and provides a potential mechanism for the reduced incidence of tumors observed in patients being treated with metformin.


Nature | 2012

Reductive carboxylation supports growth in tumour cells with defective mitochondria

Andrew R. Mullen; William W. Wheaton; Eunsook S. Jin; Pei Hsuan Chen; Lucas B. Sullivan; Tzuling Cheng; Youfeng Yang; W. Marston Linehan; Navdeep S. Chandel; Ralph J. DeBerardinis

Mitochondrial metabolism provides precursors to build macromolecules in growing cancer cells. In normally functioning tumour cell mitochondria, oxidative metabolism of glucose- and glutamine-derived carbon produces citrate and acetyl-coenzyme A for lipid synthesis, which is required for tumorigenesis. Yet some tumours harbour mutations in the citric acid cycle (CAC) or electron transport chain (ETC) that disable normal oxidative mitochondrial function, and it is unknown how cells from such tumours generate precursors for macromolecular synthesis. Here we show that tumour cells with defective mitochondria use glutamine-dependent reductive carboxylation rather than oxidative metabolism as the major pathway of citrate formation. This pathway uses mitochondrial and cytosolic isoforms of NADP+/NADPH-dependent isocitrate dehydrogenase, and subsequent metabolism of glutamine-derived citrate provides both the acetyl-coenzyme A for lipid synthesis and the four-carbon intermediates needed to produce the remaining CAC metabolites and related macromolecular precursors. This reductive, glutamine-dependent pathway is the dominant mode of metabolism in rapidly growing malignant cells containing mutations in complex I or complex III of the ETC, in patient-derived renal carcinoma cells with mutations in fumarate hydratase, and in cells with normal mitochondria subjected to acute pharmacological ETC inhibition. Our findings reveal the novel induction of a versatile glutamine-dependent pathway that reverses many of the reactions of the canonical CAC, supports tumour cell growth, and explains how cells generate pools of CAC intermediates in the face of impaired mitochondrial metabolism.


Nature Reviews Molecular Cell Biology | 2005

Autophagy in metazoans: cell survival in the land of plenty

Julian J. Lum; Ralph J. DeBerardinis; Craig B. Thompson

Cells require a constant supply of macromolecular precursors and oxidizable substrates to maintain viability. Unicellular eukaryotes lack the ability to regulate nutrient concentrations in their extracellular environment. So when environmental nutrients are depleted, these organisms catabolize existing cytoplasmic components to support ATP production to maintain survival, a process known as autophagy. By contrast, the environment of metazoans normally contains abundant extracellular nutrients, but a cells ability to take up these nutrients is controlled by growth factor signal transduction. Despite evolving the ability to maintain a constant supply of extracellular nutrients, metazoans have retained a complete set of autophagy genes. The physiological relevance of autophagy in such species is just beginning to be explored.


Oncogene | 2010

Q's next: The diverse functions of glutamine in metabolism, cell biology and cancer

Ralph J. DeBerardinis; Tzuling Cheng

Several decades of research have sought to characterize tumor cell metabolism in the hope that tumor-specific activities can be exploited to treat cancer. Having originated from Warburgs seminal observation of aerobic glycolysis in tumor cells, most of this attention has focused on glucose metabolism. However, since the 1950s cancer biologists have also recognized the importance of glutamine (Q) as a tumor nutrient. Glutamine contributes to essentially every core metabolic task of proliferating tumor cells: it participates in bioenergetics, supports cell defenses against oxidative stress and complements glucose metabolism in the production of macromolecules. The interest in glutamine metabolism has been heightened further by the recent findings that c-myc controls glutamine uptake and degradation, and that glutamine itself exerts influence over a number of signaling pathways that contribute to tumor growth. These observations are stimulating a renewed effort to understand the regulation of glutamine metabolism in tumors and to develop strategies to target glutamine metabolism in cancer. In this study we review the protean roles of glutamine in cancer, both in the direct support of tumor growth and in mediating some of the complex effects on whole-body metabolism that are characteristic of tumor progression.


Cell Stem Cell | 2010

The Distinct Metabolic Profile of Hematopoietic Stem Cells Reflects Their Location in a Hypoxic Niche

Tugba Simsek; Fatih Kocabas; Junke Zheng; Ralph J. DeBerardinis; Ahmed I. Mahmoud; Eric N. Olson; Jay W. Schneider; Cheng Cheng Zhang; Hesham A. Sadek

Bone marrow transplantation is the primary therapy for numerous hematopoietic disorders. The efficiency of bone marrow transplantation depends on the function of long-term hematopoietic stem cells (LT-HSCs), which is markedly influenced by their hypoxic niche. Survival in this low-oxygen microenvironment requires significant metabolic adaptation. Here, we show that LT-HSCs utilize glycolysis instead of mitochondrial oxidative phosphorylation to meet their energy demands. We used flow cytometry to identify a unique low mitochondrial activity/glycolysis-dependent subpopulation that houses the majority of hematopoietic progenitors and LT-HSCs. Finally, we demonstrate that Meis1 and Hif-1alpha are markedly enriched in LT-HSCs and that Meis1 regulates HSC metabolism through transcriptional activation of Hif-1alpha. These findings reveal an important transcriptional network that regulates HSC metabolism.


Journal of Clinical Investigation | 2013

Glutamine and cancer: cell biology, physiology, and clinical opportunities

Christopher T. Hensley; Ajla T. Wasti; Ralph J. DeBerardinis

Glutamine is an abundant and versatile nutrient that participates in energy formation, redox homeostasis, macromolecular synthesis, and signaling in cancer cells. These characteristics make glutamine metabolism an appealing target for new clinical strategies to detect, monitor, and treat cancer. Here we review the metabolic functions of glutamine as a super nutrient and the surprising roles of glutamine in supporting the biological hallmarks of malignancy. We also review recent efforts in imaging and therapeutics to exploit tumor cell glutamine dependence, discuss some of the challenges in this arena, and suggest a disease-focused paradigm to deploy these emerging approaches.


Nature | 2011

Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase

Christian Frezza; Liang Zheng; Ori Folger; Kartik N. Rajagopalan; Elaine D. MacKenzie; Livnat Jerby; Massimo Micaroni; Barbara Chaneton; Julie Adam; Ann Hedley; Gabriela Kalna; Ian Tomlinson; Patrick J. Pollard; Watson Dg; Ralph J. DeBerardinis; Tomer Shlomi; Eytan Ruppin; Eyal Gottlieb

Fumarate hydratase (FH) is an enzyme of the tricarboxylic acid cycle (TCA cycle) that catalyses the hydration of fumarate into malate. Germline mutations of FH are responsible for hereditary leiomyomatosis and renal-cell cancer (HLRCC). It has previously been demonstrated that the absence of FH leads to the accumulation of fumarate, which activates hypoxia-inducible factors (HIFs) at normal oxygen tensions. However, so far no mechanism that explains the ability of cells to survive without a functional TCA cycle has been provided. Here we use newly characterized genetically modified kidney mouse cells in which Fh1 has been deleted, and apply a newly developed computer model of the metabolism of these cells to predict and experimentally validate a linear metabolic pathway beginning with glutamine uptake and ending with bilirubin excretion from Fh1-deficient cells. This pathway, which involves the biosynthesis and degradation of haem, enables Fh1-deficient cells to use the accumulated TCA cycle metabolites and permits partial mitochondrial NADH production. We predicted and confirmed that targeting this pathway would render Fh1-deficient cells non-viable, while sparing wild-type Fh1-containing cells. This work goes beyond identifying a metabolic pathway that is induced in Fh1-deficient cells to demonstrate that inhibition of haem oxygenation is synthetically lethal when combined with Fh1 deficiency, providing a new potential target for treating HLRCC patients.

Collaboration


Dive into the Ralph J. DeBerardinis's collaboration.

Top Co-Authors

Avatar

Jessica Sudderth

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Zeping Hu

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Craig R. Malloy

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Chendong Yang

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lei Jiang

Beckman Research Institute

View shared research outputs
Top Co-Authors

Avatar

Elizabeth A. Maher

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

John D. Minna

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Robert M. Bachoo

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Craig B. Thompson

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Kenneth Huffman

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge