Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin S. Gmelch is active.

Publication


Featured researches published by Benjamin S. Gmelch.


The Journal of Physiology | 2014

Spinal μ-opioid receptor-sensitive lower limb muscle afferents determine corticospinal responsiveness and promote central fatigue in upper limb muscle

Simranjit K. Sidhu; Joshua C. Weavil; Massimo Venturelli; Ryan S. Garten; Matthew J. Rossman; Russell S. Richardson; Benjamin S. Gmelch; David E. Morgan; Markus Amann

We aimed to elucidate the role of group III/IV locomotor muscle afferents in the development of central fatigue and the responsiveness of the corticospinal tract in relation to an unexercised arm muscle. Intrathecal fentanyl, a μ‐opioid receptor agonist, was employed to attenuate afferent feedback from the leg muscles during intense cycling exercise characterized by either no or severe peripheral locomotor muscle fatigue. In the absence of locomotor muscle fatigue, group III/IV‐mediated leg afferent feedback facilitates the responsiveness of the motor pathway to upper limb flexor muscles. By contrast, in the presence of leg fatigue, group III/IV locomotor muscle afferents facilitate supraspinal fatigue in a remote muscle not involved in the exercise and disfacilitate the responsiveness of associated corticospinal projections.


The Journal of Physiology | 2012

Nitric oxide and passive limb movement: a new approach to assess vascular function

Joel D. Trinity; H. Jonathan Groot; Gwenael Layec; Matthew J. Rossman; Stephen J. Ives; Sean Runnels; Benjamin S. Gmelch; Amber D. Bledsoe; Russell S. Richardson

•  Passive limb movement elicits a robust increase in limb blood flow (LBF) and limb vascular conductance (LVC) without a concomitant increase in skeletal muscle metabolism. •  The peripheral vascular mechanisms associated with the increase in LBF and LVC are unknown. •  Using an intra‐arterial infusion of NG‐monomethyl‐l‐arginine (l‐NMMA) to inhibit nitric oxide synthase (NOS) the hyperaemic and vasodilatory response to passive limb movement was attenuated by nearly 80%. •  This finding demonstrates that the increases in LBF and LVC during passive limb movement are primarily NO dependent. •  Passive limb movement appears to have significant promise as a new approach to assess NO‐mediated vascular function, an important predictor of cardiovascular disease risk.


International Journal of Cardiology | 2014

Group III/IV muscle afferents impair limb blood in patients with chronic heart failure☆ , ☆☆

Marcus Amann; Massimo Venturelli; Stephen J. Ives; David E. Morgan; Benjamin S. Gmelch; Melissa A. H. Witman; H. Jonathan Groot; D. Walter Wray; Josef Stehlik; Russell S. Richardson

OBJECTIVE To better understand the hemodynamic and autonomic reflex abnormalities in heart-failure patients (HF), we investigated the influence of group III/IV muscle afferents on their cardiovascular response to rhythmic exercise. METHODS Nine HF-patients (NYHA class-II, mean left ventricular ejection-fraction: 27 ± 3%) performed single leg knee-extensor exercise (25/50/80% peak-workload) under control conditions and with lumbar intrathecal fentanyl impairing μ-opioid receptor-sensitive muscle afferents. RESULTS Cardiac-output (Q) and femoral blood-flow (QL) were determined, and arterial/venous blood samples collected at each workload. Exercise-induced fatigue was estimated via pre/post-exercise changes in quadriceps strength. There were no hemodynamic differences between conditions at rest. During exercise, Q was 8-13% lower with Fentanyl-blockade, secondary to significant reductions in stroke volume and heart rate. Lower norepinephrine spillover during exercise with Fentanyl revealed an attenuated sympathetic outflow that likely contributed to the 25% increase in leg vascular conductance (p<0.05). Despite a concomitant 4% reduction in blood pressure, QL was 10-14% higher and end-exercise fatigue attenuated by 30% with Fentanyl-blockade (p<0.05). CONCLUSION/PRACTICE/IMPLICATIONS Although group III/IV muscle afferents play a critical role for central hemodynamics in HF-patients, it also appears that these sensory neurons cause excessive sympatho-excitation impairing QL which likely contributes to the exercise intolerance in this population.


American Journal of Physiology-heart and Circulatory Physiology | 2015

Passive leg movement and nitric oxide-mediated vascular function: the impact of age

Joel D. Trinity; H. Jonathan Groot; Gwenael Layec; Matthew J. Rossman; Stephen J. Ives; David E. Morgan; Benjamin S. Gmelch; Amber D. Bledsoe; Russell S. Richardson

UNLABELLED In young healthy men, passive leg movement (PLM) elicits a robust nitric oxide (NO)-dependent increase in leg blood flow (LBF), thus providing a novel approach to assess NO-mediated vascular function. While the magnitude of the LBF response to PLM is markedly reduced with age, the role of NO in this attenuated response in the elderly is unknown. Therefore, this study sought to determine the contribution of NO in the PLM-induced LBF with age. Fourteen male subjects (7 young, 24 ± 1 yr; and 7 old, 75 ± 3 yr) underwent PLM with and without NO synthase (NOS) inhibition achieved by intra-arterial infusion of N(G)-monomethyl-L-arginine (L-NMMA). LBF was determined second-by-second by Doppler ultrasound, and central hemodynamics were measured by finger photoplethysmography. NOS inhibition blunted the PLM-induced peak increase in LBF in the young (control: 668 ± 106; L-NMMA 431 ± 95 Δml/min; P = 0.03) but had no effect in the old (control: 266 ± 98; L-NMMA 251 ± 92 Δml/min; P = 0.59). Likewise, the magnitude of the reduction in the overall (i.e., area under the curve) PLM-induced LBF response to NOS inhibition was less in the old (LBF: -31 ± 18 ml) than the young (LBF: -129 ± 21 ml; P < 0.01). These findings suggest that the age-associated reduction in PLM-induced LBF in the elderly is primarily due to a reduced contribution to vasodilation from NO and therefore support the use of PLM as a novel approach to assess NO-mediated vascular function across the lifespan.


American Journal of Physiology-heart and Circulatory Physiology | 2013

Taming the “sleeping giant”: the role of endothelin-1 in the regulation of skeletal muscle blood flow and arterial blood pressure during exercise

Zachary Barrett-O'Keefe; Stephen J. Ives; Joel D. Trinity; Garrett Morgan; Matthew J. Rossman; Anthony J. Donato; Sean Runnels; David E. Morgan; Benjamin S. Gmelch; Amber D. Bledsoe; Russell S. Richardson; D. Walter Wray

The cardiovascular response to exercise is governed by a combination of vasodilating and vasoconstricting influences that optimize exercising muscle perfusion while protecting mean arterial pressure (MAP). The degree to which endogenous endothelin (ET)-1, the bodys most potent vasoconstrictor, participates in this response is unknown. Thus, in eight young (24 ± 2 yr), healthy volunteers, we examined leg blood flow, MAP, tissue oxygenation, heart rate, leg arterial-venous O(2) difference, leg O(2) consumption, pH, and net ET-1 and lactate release at rest and during knee extensor exercise (0, 5, 10, 15, 20, and 30 W) before and after an intra-arterial infusion of BQ-123 [ET subtype A (ET(A)) receptor antagonist]. At rest, BQ-123 did not evoke a change in leg blood flow or MAP. During exercise, net ET-1 release across the exercising leg increased approximately threefold. BQ-123 increased leg blood flow by ~20% across all work rates (changes of 113 ± 76, 176 ± 83, 304 ± 108, 364 ± 130, 502 ± 117, and 570 ± 178 ml/min at 0, 5, 10, 15, 20, and 30 W, respectively) and attenuated the exercise-induced increase in MAP by ~6%. The increase in leg blood flow was accompanied by a ~9% increase in leg O(2) consumption with an unchanged arterial-venous O(2) difference and deoxyhemoglobin, suggesting a decline in intramuscular efficiency after ET(A) receptor blockade. Together, these findings identify a significant role of the ET-1 pathway in the cardiovascular response to exercise, implicating vasoconstriction via the ET(A) receptor as an important mechanism for both the restraint of blood flow in the exercising limb and maintenance of MAP in healthy, young adults.


Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2015

Endothelin-A-Mediated Vasoconstriction During Exercise With Advancing Age

Zachary Barrett-O’Keefe; Stephen J. Ives; Joel D. Trinity; Garrett Morgan; Matthew J. Rossman; Anthony J. Donato; Sean Runnels; David E. Morgan; Benjamin S. Gmelch; Amber D. Bledsoe; Russell S. Richardson; D. Walter Wray

The endothelin-1 vasoconstrictor pathway contributes to age-related elevations in resting peripheral vascular tone primarily through activation of the endothelin subtype A (ET(A)) receptor. However, the regulatory influence of ET(A)-mediated vasoconstriction during exercise in the elderly is unknown. Thus, in 17 healthy volunteers (n = 8 young, 24±2 years; n = 9 old, 70±2 years), we examined leg blood flow, mean arterial pressure, leg arterial-venous oxygen (O2) difference, and leg O2 consumption (VO2) at rest and during knee-extensor exercise before and after intra-arterial administration of the ET(A) antagonist BQ-123. During exercise, BQ-123 administration increased leg blood flow to a greater degree in the old (+29±5 mL/min/W) compared with the young (+16±3 mL/min/W). The increase in leg blood flow with BQ-123 was accompanied by an increase in leg VO2 in both groups, suggesting a reduced efficiency following ET(A) receptor blockade. Together, these findings have identified an age-related increase in ET(A)-mediated vasoconstrictor activity that persists during exercise, suggesting an important role of this pathway in the regulation of exercising skeletal muscle blood flow and maintenance of arterial blood pressure in the elderly.


American Journal of Physiology-heart and Circulatory Physiology | 2015

Aging alters muscle reflex control of autonomic cardiovascular responses to rhythmic contractions in humans

Simranjit K. Sidhu; Joshua C. Weavil; Massimo Venturelli; Matthew J. Rossman; Benjamin S. Gmelch; Amber D. Bledsoe; Russell S. Richardson; Markus Amann

We investigated the influence of aging on the group III/IV muscle afferents in the exercise pressor reflex-mediated cardiovascular response to rhythmic exercise. Nine old (OLD; 68 ± 2 yr) and nine young (YNG; 24 ± 2 yr) males performed single-leg knee extensor exercise (15 W, 30 W, 80% max) under control conditions and with lumbar intrathecal fentanyl impairing feedback from group III/IV leg muscle afferents. Mean arterial pressure (MAP), cardiac output, leg blood flow (QL), systemic (SVC) and leg vascular conductance (LVC) were continuously determined. With no hemodynamic effect at rest, fentanyl blockade during exercise attenuated both cardiac output and QL ∼17% in YNG, while the decrease in cardiac output in OLD (∼5%) was significantly smaller with no impact on QL (P = 0.8). Therefore, in the face of similar significant ∼7% reduction in MAP during exercise with fentanyl blockade in both groups, LVC significantly increased ∼11% in OLD, but decreased ∼8% in YNG. The opposing direction of change was reflected in SVC with a significant ∼5% increase in OLD and a ∼12% decrease in YNG. Thus while cardiac output seems to account for the majority of group III/IV-mediated MAP responses in YNG, the impact of neural feedback on the heart may decrease with age and alterations in SVC become more prominent in mediating the similar exercise pressor reflex in OLD. Interestingly, in terms of peripheral hemodynamics, while group III/IV-mediated feedback plays a clear role in increasing LVC during exercise in the YNG, these afferents seem to actually reduce LVC in OLD. These peripheral findings may help explain the limited exercise-induced peripheral vasodilation often associated with aging.


Archive | 2015

CYP2E1: The Anesthesia Enzyme

Benjamin S. Gmelch; Randal O. Dull

This chapter discusses the genetics, metabolic actions, substrates, inducers, and inhibitors of cytochrome P450 2E1.


Journal of Hypertension | 2016

Endogenous endothelin-1 and femoral artery shear rate: Impact of age and implications for atherosclerosis

Joel D. Trinity; Zachary Barrett-O'Keefe; Stephen J. Ives; Garrett Morgan; Matthew J. Rossman; Anthony J. Donato; Sean Runnels; David E. Morgan; Benjamin S. Gmelch; Amber D. Bledsoe; Russell S. Richardson; Wray Dw

Background: Both altered shear rate and endothelin-1 (ET-1) are associated with the age-related development of atherosclerosis. However, the role of ET-1, a potent endogenous vasoconstrictor, in altering shear rate in humans, especially in the atherosclerotic-prone vasculature of the leg, is unknown. Therefore, this study examined the contribution of ET-1 to the age-related alterations in common femoral artery (CFA) shear rate. Method: BQ-123, a specific endothelin type A (ETA) receptor antagonist, was infused into the CFA, and diameter and blood velocity were measured by Doppler ultrasound in young (n = 8, 24 ± 2 years) and old (n = 9, 70 ± 2 years) study participants. Results and conclusion: The old had greater intima–media thickening in the CFA, indicative of a preatherogenic phenotype. Prior to infusion, the old study participants exhibited reduced mean shear rate (27 ± 3/s) compared with the young study participants (62 ± 9/s). This difference was likely driven by attenuated antegrade shear rate in the old as retrograde shear rate was similar in the young and old. Inhibition of ETA receptors, by BQ-123, increased leg blood flow in the old, but not in the young, abolishing age-related differences. Older study participants had a larger CFA (young: 0.82 ± 0.03 cm, old: 0.99 ± 0.03 cm) in which BQ-123 induced significant vasodilation (5.1 ± 1.0%), but had no such effect in the young (−0.8 ± 0.8%). Interestingly, despite the age-specific, BQ-123-induced increase in leg blood flow and CFA diameter, shear rate patterns remained largely unchanged. Therefore, ET-1, acting through the ETA receptors, exerts a powerful age-specific vasoconstriction. However, removal of this vasoconstrictor stimulus does not augment mean shear rate in the old.


Journal of Cardiothoracic and Vascular Anesthesia | 2015

A Review of 364 Perioperative Rescue Echocardiograms: Findings of an Anesthesiologist-Staffed Perioperative Echocardiography Service

Nicholas W. Markin; Benjamin S. Gmelch; Matthew J. Griffee; Timothy J. Holmberg; David E. Morgan; Joshua M. Zimmerman

Collaboration


Dive into the Benjamin S. Gmelch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony J. Donato

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

D. Walter Wray

University of North Texas Health Science Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge