Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew J. Rossman is active.

Publication


Featured researches published by Matthew J. Rossman.


Journal of Applied Physiology | 2013

Peripheral fatigue limits endurance exercise via a sensory feedback-mediated reduction in spinal motoneuronal output

Markus Amann; Massimo Venturelli; Stephen J. Ives; John McDaniel; Gwenael Layec; Matthew J. Rossman; Russell S. Richardson

This study sought to determine whether afferent feedback associated with peripheral muscle fatigue inhibits central motor drive (CMD) and thereby limits endurance exercise performance. On two separate days, eight men performed constant-load, single-leg knee extensor exercise to exhaustion (85% of peak power) with each leg (Leg1 and Leg2). On another day, the performance test was repeated with one leg (Leg1) and consecutively (within 10 s) with the other/contralateral leg (Leg2-post). Exercise-induced quadriceps fatigue was assessed by reductions in potentiated quadriceps twitch-force from pre- to postexercise (ΔQtw,pot) in response to supramaximal magnetic femoral nerve stimulation. The output from spinal motoneurons, estimated from quadriceps electromyography (iEMG), was used to reflect changes in CMD. Rating of perceived exertion (RPE) was recorded during exercise. Time to exhaustion (∼9.3 min) and exercise-induced ΔQtw,pot (∼51%) were similar in Leg1 and Leg2 (P > 0.5). In the consecutive leg trial, endurance performance of the first leg was similar to that observed during the initial trial (∼9.3 min; P = 0.8); however, time to exhaustion of the consecutively exercising contralateral leg (Leg2-post) was shorter than the initial Leg2 trial (4.7 ± 0.6 vs. 9.2 ± 0.4 min; P < 0.01). Additionally, ΔQtw,pot following Leg2-post was less than Leg2 (33 ± 3 vs 52 ± 3%; P < 0.01). Although the slope of iEMG was similar during Leg2 and Leg2-post, end-exercise iEMG following Leg2-post was 26% lower compared with Leg2 (P < 0.05). Despite a similar rate of rise, RPE was consistently ∼28% higher throughout Leg2-post vs. Leg2 (P < 0.05). In conclusion, this study provides evidence that peripheral fatigue and associated afferent feedback limits the development of peripheral fatigue and compromises endurance exercise performance by inhibiting CMD.


The Journal of Physiology | 2014

Spinal μ-opioid receptor-sensitive lower limb muscle afferents determine corticospinal responsiveness and promote central fatigue in upper limb muscle

Simranjit K. Sidhu; Joshua C. Weavil; Massimo Venturelli; Ryan S. Garten; Matthew J. Rossman; Russell S. Richardson; Benjamin S. Gmelch; David E. Morgan; Markus Amann

We aimed to elucidate the role of group III/IV locomotor muscle afferents in the development of central fatigue and the responsiveness of the corticospinal tract in relation to an unexercised arm muscle. Intrathecal fentanyl, a μ‐opioid receptor agonist, was employed to attenuate afferent feedback from the leg muscles during intense cycling exercise characterized by either no or severe peripheral locomotor muscle fatigue. In the absence of locomotor muscle fatigue, group III/IV‐mediated leg afferent feedback facilitates the responsiveness of the motor pathway to upper limb flexor muscles. By contrast, in the presence of leg fatigue, group III/IV locomotor muscle afferents facilitate supraspinal fatigue in a remote muscle not involved in the exercise and disfacilitate the responsiveness of associated corticospinal projections.


The Journal of Physiology | 2012

Nitric oxide and passive limb movement: a new approach to assess vascular function

Joel D. Trinity; H. Jonathan Groot; Gwenael Layec; Matthew J. Rossman; Stephen J. Ives; Sean Runnels; Benjamin S. Gmelch; Amber D. Bledsoe; Russell S. Richardson

•  Passive limb movement elicits a robust increase in limb blood flow (LBF) and limb vascular conductance (LVC) without a concomitant increase in skeletal muscle metabolism. •  The peripheral vascular mechanisms associated with the increase in LBF and LVC are unknown. •  Using an intra‐arterial infusion of NG‐monomethyl‐l‐arginine (l‐NMMA) to inhibit nitric oxide synthase (NOS) the hyperaemic and vasodilatory response to passive limb movement was attenuated by nearly 80%. •  This finding demonstrates that the increases in LBF and LVC during passive limb movement are primarily NO dependent. •  Passive limb movement appears to have significant promise as a new approach to assess NO‐mediated vascular function, an important predictor of cardiovascular disease risk.


Acta Physiologica | 2012

Muscle mass and peripheral fatigue: a potential role for afferent feedback?

Matthew J. Rossman; Massimo Venturelli; John McDaniel; Markus Amann; Russell S. Richardson

The voluntary termination of exercise has been hypothesized to occur at a sensory tolerance limit, which is affected by feedback from group III and IV muscle afferents, and is associated with a specific level of peripheral quadriceps fatigue during whole body cycling. Therefore, the purpose of this study was to reduce the amount of muscle mass engaged during dynamic leg exercise to constrain the source of muscle afferent feedback to the central nervous system (CNS) and examine the effect on peripheral quadriceps fatigue.


American Journal of Physiology-heart and Circulatory Physiology | 2015

Passive leg movement and nitric oxide-mediated vascular function: the impact of age

Joel D. Trinity; H. Jonathan Groot; Gwenael Layec; Matthew J. Rossman; Stephen J. Ives; David E. Morgan; Benjamin S. Gmelch; Amber D. Bledsoe; Russell S. Richardson

UNLABELLED In young healthy men, passive leg movement (PLM) elicits a robust nitric oxide (NO)-dependent increase in leg blood flow (LBF), thus providing a novel approach to assess NO-mediated vascular function. While the magnitude of the LBF response to PLM is markedly reduced with age, the role of NO in this attenuated response in the elderly is unknown. Therefore, this study sought to determine the contribution of NO in the PLM-induced LBF with age. Fourteen male subjects (7 young, 24 ± 1 yr; and 7 old, 75 ± 3 yr) underwent PLM with and without NO synthase (NOS) inhibition achieved by intra-arterial infusion of N(G)-monomethyl-L-arginine (L-NMMA). LBF was determined second-by-second by Doppler ultrasound, and central hemodynamics were measured by finger photoplethysmography. NOS inhibition blunted the PLM-induced peak increase in LBF in the young (control: 668 ± 106; L-NMMA 431 ± 95 Δml/min; P = 0.03) but had no effect in the old (control: 266 ± 98; L-NMMA 251 ± 92 Δml/min; P = 0.59). Likewise, the magnitude of the reduction in the overall (i.e., area under the curve) PLM-induced LBF response to NOS inhibition was less in the old (LBF: -31 ± 18 ml) than the young (LBF: -129 ± 21 ml; P < 0.01). These findings suggest that the age-associated reduction in PLM-induced LBF in the elderly is primarily due to a reduced contribution to vasodilation from NO and therefore support the use of PLM as a novel approach to assess NO-mediated vascular function across the lifespan.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2014

The role of active muscle mass in determining the magnitude of peripheral fatigue during dynamic exercise

Matthew J. Rossman; Ryan S. Garten; Massimo Venturelli; Markus Amann; Russell S. Richardson

Greater peripheral quadriceps fatigue at the voluntary termination of single-leg knee-extensor exercise (KE), compared with whole-body cycling, has been attributed to confining group III and IV skeletal muscle afferent feedback to a small muscle mass, enabling the central nervous system (CNS) to tolerate greater peripheral fatigue. However, as task specificity and vastly differing systemic challenges may have complicated this interpretation, eight males were studied during constant workload trials to exhaustion at 85% of peak workload during single-leg and double-leg KE. It was hypothesized that because of the smaller muscle mass engaged during single-leg KE, a greater magnitude of peripheral quadriceps fatigue would be present at exhaustion. Vastus lateralis integrated electromyogram (iEMG) signal relative to the first minute of exercise, preexercise to postexercise maximal voluntary contractions (MVCs) of the quadriceps, and twitch-force evoked by supramaximal magnetic femoral nerve stimulation (Qtw,pot) quantified peripheral quadriceps fatigue. Trials performed with single-leg KE (8.1 ± 1.2 min; 45 ± 4 W) resulted in significantly greater peripheral quadriceps fatigue than double-leg KE (10 ± 1.3 min; 83 ± 7 W), as documented by changes in the iEMG signal (147 ± 24 vs. 85 ± 13%), MVC (-25 ± 3 vs. -12 ± 3%), and Qtw,pot (-44 ± 6 vs. -33 ± 7%), for single-leg and double-leg KE, respectively. Therefore, avoiding concerns over task specificity and cardiorespiratory limitations, this study reveals that a reduction in muscle mass permits the development of greater peripheral muscle fatigue and supports the concept that the CNS tolerates a greater magnitude of peripheral fatigue when the source of group III/IV afferent feedback is limited to a small muscle mass.


American Journal of Physiology-heart and Circulatory Physiology | 2013

Taming the “sleeping giant”: the role of endothelin-1 in the regulation of skeletal muscle blood flow and arterial blood pressure during exercise

Zachary Barrett-O'Keefe; Stephen J. Ives; Joel D. Trinity; Garrett Morgan; Matthew J. Rossman; Anthony J. Donato; Sean Runnels; David E. Morgan; Benjamin S. Gmelch; Amber D. Bledsoe; Russell S. Richardson; D. Walter Wray

The cardiovascular response to exercise is governed by a combination of vasodilating and vasoconstricting influences that optimize exercising muscle perfusion while protecting mean arterial pressure (MAP). The degree to which endogenous endothelin (ET)-1, the bodys most potent vasoconstrictor, participates in this response is unknown. Thus, in eight young (24 ± 2 yr), healthy volunteers, we examined leg blood flow, MAP, tissue oxygenation, heart rate, leg arterial-venous O(2) difference, leg O(2) consumption, pH, and net ET-1 and lactate release at rest and during knee extensor exercise (0, 5, 10, 15, 20, and 30 W) before and after an intra-arterial infusion of BQ-123 [ET subtype A (ET(A)) receptor antagonist]. At rest, BQ-123 did not evoke a change in leg blood flow or MAP. During exercise, net ET-1 release across the exercising leg increased approximately threefold. BQ-123 increased leg blood flow by ~20% across all work rates (changes of 113 ± 76, 176 ± 83, 304 ± 108, 364 ± 130, 502 ± 117, and 570 ± 178 ml/min at 0, 5, 10, 15, 20, and 30 W, respectively) and attenuated the exercise-induced increase in MAP by ~6%. The increase in leg blood flow was accompanied by a ~9% increase in leg O(2) consumption with an unchanged arterial-venous O(2) difference and deoxyhemoglobin, suggesting a decline in intramuscular efficiency after ET(A) receptor blockade. Together, these findings identify a significant role of the ET-1 pathway in the cardiovascular response to exercise, implicating vasoconstriction via the ET(A) receptor as an important mechanism for both the restraint of blood flow in the exercising limb and maintenance of MAP in healthy, young adults.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2013

Ascorbate infusion increases skeletal muscle fatigue resistance in patients with chronic obstructive pulmonary disease

Matthew J. Rossman; Ryan S. Garten; H. Jonathan Groot; Van Reese; Jia Zhao; Markus Amann; Russell S. Richardson

Chronic obstructive pulmonary disease (COPD) is associated with systemic oxidative stress and skeletal muscle dysfunction. The purpose of this study was to examine the impact of intravenous ascorbate administration (AO) on biological markers of antioxidant capacity and oxidative stress, and subsequently skeletal muscle function during dynamic, small muscle mass exercise in patients with COPD. Ten patients with spirometric evidence of COPD performed single-leg knee extensor (KE) trials matched for intensity and time (isotime) following intravenous ascorbate (2 g) or saline infusion (PL). Quadriceps fatigue was quantified by changes in force elicited by maximal voluntary contraction (MVC) and magnetic femoral nerve stimulation (Qtw,pot). AO administration significantly increased antioxidant capacity, as measured by the ferric-reducing ability of plasma (PL: 1 ± 0.1 vs. AO: 5 ± 0.2 mM), and significantly reduced malondialdehyde levels (PL: 1.16 ± 0.1 vs. AO: 0.97 ± 0.1 mmol). Additionally, resting blood pressure was significantly reduced (PL: 104 ± 4 vs. AO: 93 ± 6 mmHg) and resting femoral vascular conductance was significantly elevated after AO (PL: 2.4 ± 0.2 vs. AO: 3.6 ± 0.4 ml·min(-1)·mmHg(-1)). During isotime exercise, the AO significantly attenuated both the ventilatory and metabolic responses, and patients accumulated significantly less peripheral quadriceps fatigue, as illustrated by less of a fall in MVC (PL: -11 ± 2% vs. AO: -5 ± 1%) and Qtw,pot (PL: -37 ± 1% vs. AO: -30 ± 2%). These data demonstrate a beneficial role of AO administration on skeletal muscle fatigue in patients with COPD and further implicate systemic oxidative stress as a causative factor in the skeletal muscle dysfunction observed in this population.


The Journal of Physiology | 2016

Symmorphosis and skeletal muscle V̇O2 max : in vivo and in vitro measures reveal differing constraints in the exercise-trained and untrained human.

Jayson R. Gifford; Ryan S. Garten; Ashley D. Nelson; Joel D. Trinity; Gwenael Layec; Melissa A. H. Witman; Joshua C. Weavil; Tyler S. Mangum; Corey R. Hart; Cory Etheredge; Jake Jessop; Amber D. Bledsoe; David E. Morgan; D. Walter Wray; Matthew J. Rossman; Russell S. Richardson

The concept of symmorphosis predicts that the capacity of each step of the oxygen cascade is attuned to the task demanded of it during aerobic exercise at maximal rates of oxygen consumption ( V̇O2 max ) such that no single process is limiting or in excess at V̇O2 max . The present study challenges the applicability of this concept to humans by revealing clear, albeit very different, limitations and excesses in oxygen supply and consumption among untrained and endurance‐trained humans. Among untrained individuals, V̇O2 max is limited by the capacity of the mitochondria to consume oxygen, despite an excess of oxygen supply, whereas, among trained individuals, V̇O2 max is limited by the supply of oxygen to the mitochondria, despite an excess of mitochondrial respiratory capacity.


Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2015

Endothelin-A-Mediated Vasoconstriction During Exercise With Advancing Age

Zachary Barrett-O’Keefe; Stephen J. Ives; Joel D. Trinity; Garrett Morgan; Matthew J. Rossman; Anthony J. Donato; Sean Runnels; David E. Morgan; Benjamin S. Gmelch; Amber D. Bledsoe; Russell S. Richardson; D. Walter Wray

The endothelin-1 vasoconstrictor pathway contributes to age-related elevations in resting peripheral vascular tone primarily through activation of the endothelin subtype A (ET(A)) receptor. However, the regulatory influence of ET(A)-mediated vasoconstriction during exercise in the elderly is unknown. Thus, in 17 healthy volunteers (n = 8 young, 24±2 years; n = 9 old, 70±2 years), we examined leg blood flow, mean arterial pressure, leg arterial-venous oxygen (O2) difference, and leg O2 consumption (VO2) at rest and during knee-extensor exercise before and after intra-arterial administration of the ET(A) antagonist BQ-123. During exercise, BQ-123 administration increased leg blood flow to a greater degree in the old (+29±5 mL/min/W) compared with the young (+16±3 mL/min/W). The increase in leg blood flow with BQ-123 was accompanied by an increase in leg VO2 in both groups, suggesting a reduced efficiency following ET(A) receptor blockade. Together, these findings have identified an age-related increase in ET(A)-mediated vasoconstrictor activity that persists during exercise, suggesting an important role of this pathway in the regulation of exercising skeletal muscle blood flow and maintenance of arterial blood pressure in the elderly.

Collaboration


Dive into the Matthew J. Rossman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ryan S. Garten

University of North Carolina at Greensboro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Markus Amann

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge