Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin Sanchez is active.

Publication


Featured researches published by Benjamin Sanchez.


Measurement Science and Technology | 2012

Basics of broadband impedance spectroscopy measurements using periodic excitations

Benjamin Sanchez; Gerd Vandersteen; Ramon Bragós; Johan Schoukens

Measuring the impedance frequency response of systems by means of frequency sweep electrical impedance spectroscopy (EIS) takes time. An alternative based on broadband signals enables the user to acquire simultaneous impedance response data collection. This is directly reflected in a short measuring time compared to the frequency sweep approach. As a result of this increase in the measuring speed, the accuracy of the impedance spectrum is compromised. The aim of this paper is to study how the choice of the broadband signal can contribute to mitigate this accuracy loss. A review of the major advantages and pitfalls of four different periodic broadband excitations suitable to be used in EIS applications is presented. Their influence on the instrumentation and impedance spectrum accuracy is analyzed. Additionally, the signal processing tools to objectively evaluate the quality of the impedance spectrum are described. In view of the experimental results reported, the impedance spectrum signalto- noise ratio (SNR Z) obtained with multisine or discrete interval binary sequence signals is about 20-30 dB more accurate than maximum length binary sequence or chirp signals.


IEEE Transactions on Biomedical Engineering | 2011

Novel Estimation of the Electrical Bioimpedance Using the Local Polynomial Method. Application to In Vivo Real-Time Myocardium Tissue Impedance Characterization During the Cardiac Cycle

Benjamin Sanchez; Johan Schoukens; Ramon Bragós; Gerd Vandersteen

Classical measurements of myocardium tissue electrical impedance for characterizing the morphology of myocardium cells, as well as cell membranes integrity and intra/extra cellular spaces, are based on the frequency-sweep electrical impedance spectroscopy (EIS) technique. In contrast to the frequency-sweep EIS approach, measuring with broadband signals, i.e., multisine excitations, enables to collect, simultaneously, multiple myocardium tissue impedance data in a short measuring time. However, reducing the measuring time makes the measurements to be prone to the influence of the transients introduced by noise and the dynamic time-varying properties of tissue. This paper presents a novel approach for the impedance-frequency-response estimation based on the local polynomial method (LPM). The fast LPM version presented rejects the leakage errors influence on the impedance frequency response when measuring electrical bioimpedance in a short time. The theory is supported by a set of validation measurements. Novel preliminary experimental results obtained from real-time in vivo healthy myocardium tissue impedance characterization within the cardiac cycle using multisine excitation are reported.


Measurement Science and Technology | 2011

Optimal multisine excitation design for broadband electrical impedance spectroscopy

Benjamin Sanchez; Gerd Vandersteen; Ramon Bragós; Johan Schoukens

Electrical impedance spectroscopy (EIS) can be used to characterize biological materials in applications ranging from cell culture to body composition, including tissue and organ state. The emergence of cell therapy and tissue engineering opens up a new and promising field of application. While in most cases classical measurement techniques based on a frequency sweep can be used, EIS based on broadband excitations enables dynamic biological systems to be characterized when the measuring time and injected energy are a constraint. Myocardial regeneration, cell characterization in micro-fluidic systems and dynamic electrical impedance tomography are all examples of such applications. The weakness of such types of fast EIS measuring techniques resides in their intrinsic loss of accuracy. However, since most of the practical applications have no restriction over the excitation used, the input power spectrum can be appropriately designed to maximize the accuracy obtained from the measurements. This paper deals with the problem of designing the optimal multisine excitation for electrical bioimpedance measurements. The optimal multisine is obtained by the minimization of the Cramer–Rao lower bound, or what is the same, by maximizing the accuracy obtained from the measurements. Furthermore, because no analytical solution exists for global optimization involving time and frequency domains jointly, this paper presents the multisine optimization approach partially in both domains and then combines the results. As regards the frequency domain approach, a novel contribution is made for the multisine amplitude power spectrum. In the time domain, multisine is optimized by reducing its crest factor. Moreover, the impact on the information and accuracy of the impedance spectrum obtained from using different multisine amplitude power spectra is discussed, as well as the number of frequencies and frequency distributions. The theory is supported by a set of validation measurements when exciting with the optimal and flat multisine signals and compared to a single frequency ac impedance analyzer when characterizing an RC circuit. In vivo healthy myocardium tissue electrical impedance measurements show that broadband EIS based on multisine excitations enable the characterization of dynamic biological systems.


Measurement Science and Technology | 2012

On the calculation of the D-optimal multisine excitation power spectrum for broadband impedance spectroscopy measurements

Benjamin Sanchez; Cristian R. Rojas; Gerd Vandersteen; Ramon Bragós; Johan Schoukens

The successful application of impedance spectroscopy in daily practice requires accurate measurements for modeling complex physiological or electrochemical phenomena in a single frequency or several frequencies at different (or simultaneous) time instants. Nowadays, two approaches are possible for frequency domain impedance spectroscopy measurements: (1) using the classical technique of frequency sweep and (2) using (non-)periodic broadband signals, i.e. multisine excitations. Both techniques share the common problem of how to design the experimental conditions, e.g. the excitation power spectrum, in order to achieve accuracy of maximum impedance model parameters from the impedance data modeling process. The original contribution of this paper is the calculation and design of the D-optimal multisine excitation power spectrum for measuring impedance systems modeled as 2R-1C equivalent electrical circuits. The extension of the results presented for more complex impedance models is also discussed. The influence of the multisine power spectrum on the accuracy of the impedance model parameters is analyzed based on the Fisher information matrix. Furthermore, the optimal measuring frequency range is given based on the properties of the covariance matrix. Finally, simulations and experimental results are provided to validate the theoretical aspects presented.


Medical Engineering & Physics | 2013

In vivo electrical bioimpedance characterization of human lung tissue during the bronchoscopy procedure. A feasibility study

Benjamin Sanchez; Gerd Vandersteen; Irene Martin; Diego Castillo; Alfons Torrego; Pere J. Riu; Johan Schoukens; Ramon Bragós

Lung biopsies form the basis for the diagnosis of lung cancer. However, in a significant number of cases bronchoscopic lung biopsies fail to provide useful information, especially in diffuse lung disease, so more aggressive procedures are required. Success could be improved using a guided electronic biopsy based on multisine electrical impedance spectroscopy (EIS), a technique which is evaluated in this paper. The theoretical basis of the measurement method and the instrument developed are described, characterized and calibrated while the performance of the instrument is assessed by experiments to evaluate the noise and nonlinear source of errors from measurements on phantoms. Additional preliminary results are included to demonstrate that it is both feasible and safe to monitor in vivo human lung tissue electrical bioimpedance (EBI) during the bronchoscopy procedure. The time required for performing bronchoscopy is not extended because the bioimpedance measurements, present no complications, tolerance problems or side effects among any of the patients measured.


Neurobiology of Disease | 2016

The neuromuscular impact of symptomatic SMN restoration in a mouse model of spinal muscular atrophy

W. Arnold; Vicki L. McGovern; Benjamin Sanchez; Jia Li; Kaitlyn M. Corlett; Stephen J. Kolb; Seward B. Rutkove; Arthur H.M. Burghes

BACKGROUND Significant advances in the development of SMN-restoring therapeutics have occurred since 2010 when very effective biological treatments were reported in mouse models of spinal muscular atrophy. As these treatments are applied in human clinical trials, there is pressing need to define quantitative assessments of disease progression, treatment stratification, and therapeutic efficacy. The electrophysiological measures Compound Muscle Action Potential and Motor Unit Number Estimation are reliable measures of nerve function. In both the SMN∆7 mouse and a pig model of spinal muscular atrophy, early SMN restoration results in preservation of electrophysiological measures. Currently, clinical trials are underway in patients at post-symptomatic stages of disease progression. In this study, we present results from both early and delayed SMN restoration using clinically-relevant measures including electrical impedance myography, compound muscle action potential, and motor unit number estimation to quantify the efficacy and time-sensitivity of SMN-restoring therapy. METHODS SMA∆7 mice were treated via intracerebroventricular injection with antisense oligonucleotides targeting ISS-N1 to increase SMN protein from the SMN2 gene on postnatal day 2, 4, or 6 and compared with sham-treated spinal muscular atrophy and control mice. Compound muscle action potential and motor unit number estimation of the triceps surae muscles were performed at day 12, 21, and 30 by a single evaluator blinded to genotype and treatment. Similarly, electrical impedance myography was measured on the biceps femoris muscle at 12days for comparison. RESULTS Electrophysiological measures and electrical impedance myography detected significant differences at 12days between control and late-treated (4 or 6days) and sham-treated spinal muscular atrophy mice, but not in mice treated at 2days (p<0.01). EIM findings paralleled and correlated with compound muscle action potential and motor unit number estimation (r=0.61 and r=0.50, respectively, p<0.01). Longitudinal measures at 21 and 30days show that symptomatic therapy results in reduced motor unit number estimation associated with delayed normalization of compound muscle action potential. CONCLUSIONS The incomplete effect of symptomatic treatment is accurately identified by both electrophysiological measures and electrical impedance myography. There is strong correlation between these measures and with weight and righting reflex. This study predicts that measures of compound muscle action potential, motor unit number estimation, and electrical impedance myography are promising biomarkers of treatment stratification and effect for future spinal muscular atrophy trials. The ease of application and simplicity of electrical impedance myography compared with standard electrophysiological measures may be particularly valuable in future pediatric clinical trials.


International Journal of Cardiology | 2014

Online monitoring of myocardial bioprosthesis for cardiac repair

Cristina Prat-Vidal; Carolina Gálvez-Montón; Verónica Puig-Sanvicens; Benjamin Sanchez; Idoia Díaz-Güemes; Paco Bogónez-Franco; Isaac Perea-Gil; Anna Casas-Solà; Santiago Roura; Aida Llucià-Valldeperas; Carolina Soler-Botija; Francisco M. Sánchez-Margallo; Carlos E. Semino; Ramon Bragós; Antoni Bayes-Genis

BACKGROUND/OBJECTIVES The aim of this study was to develop a myocardial bioprosthesis for cardiac repair with an integrated online monitoring system. Myocardial infarction (MI) causes irreversible myocyte loss and scar formation. Tissue engineering to reduce myocardial scar size has been tested with variable success, yet scar formation and modulation by an engineered graft is incompletely characterized. METHODS Decellularized human pericardium was embedded using self-assembling peptide RAD16-I with or without GFP-labeled mediastinal adipose tissue-derived progenitor cells (MATPCs). Resulting bioprostheses were implanted over the ischemic myocardium in the swine model of MI (n=8 treated and n=5 control animals). For in vivo electrical impedance spectroscopy (EIS) monitoring, two electrodes were anchored to construct edges, covered by NanoGold particles and connected to an impedance-based implantable device. Histological evaluation was performed to identify and characterize GFP cells on post mortem myocardial sections. RESULTS Pluripotency, cardiomyogenic and endothelial potential and migratory capacity of porcine-derived MATPCs were demonstrated in vitro. Decellularization protocol efficiency, biodegradability, as well as in vitro biocompatibility after recellularization were also verified. One month after myocardial bioprosthesis implantation, morphometry revealed a 36% reduction in infarct area, Ki67(+)-GFP(+)-MATPCs were found at infarct core and border zones, and bioprosthesis vascularization was confirmed by presence of Griffonia simplicifolia lectin I (GSLI) B4 isolectin(+)-GFP(+)-MATPCs. Electrical impedance measurement at low and high frequencies (10 kHz-100 kHz) allowed online monitoring of scar maturation. CONCLUSIONS With clinical translation as ultimate goal, this myocardial bioprosthesis holds promise to be a viable candidate for human cardiac repair.


Journal of Tissue Engineering and Regenerative Medicine | 2015

Electrical stimulation of cardiac adipose tissue-derived progenitor cells modulates cell phenotype and genetic machinery

A. Llucià-Valldeperas; Benjamin Sanchez; C. Soler-Botija; Carolina Gálvez-Montón; C. Prat-Vidal; Santiago Roura; Javier Rosell-Ferrer; Ramon Bragós; Antoni Bayes-Genis

A major challenge of cardiac tissue engineering is directing cells to establish the physiological structure and function of the myocardium being replaced. Our aim was to examine the effect of electrical stimulation on the cardiodifferentiation potential of cardiac adipose tissue‐derived progenitor cells (cardiac ATDPCs). Three different electrical stimulation protocols were tested; the selected protocol consisted of 2 ms monophasic square‐wave pulses of 50 mV/cm at 1 Hz over 14 days. Cardiac and subcutaneous ATDPCs were grown on biocompatible patterned surfaces. Cardiomyogenic differentiation was examined by real‐time PCR and immunocytofluorescence. In cardiac ATDPCs, MEF2A and GATA‐4 were significantly upregulated at day 14 after stimulation, while subcutaneous ATDPCs only exhibited increased Cx43 expression. In response to electrical stimulation, cardiac ATDPCs elongated, and both cardiac and subcutaneous ATDPCs became aligned following the linear surface pattern of the construct. Cardiac ATDPC length increased by 11.3%, while subcutaneous ATDPC length diminished by 11.2% (p = 0.013 and p = 0.030 vs unstimulated controls, respectively). Compared to controls, electrostimulated cells became aligned better to the patterned surfaces when the pattern was perpendicular to the electric field (89.71 ± 28.47º for cardiac ATDPCs and 92.15 ± 15.21º for subcutaneous ATDPCs). Electrical stimulation of cardiac ATDPCs caused changes in cell phenotype and genetic machinery, making them more suitable for cardiac regeneration approaches. Thus, it seems advisable to use electrical cell training before delivery as a cell suspension or within engineered tissue. Copyright


Medical Engineering & Physics | 2013

Novel approach of processing electrical bioimpedance data using differential impedance analysis

Benjamin Sanchez; Aliaksandr S. Bandarenka; Gerd Vandersteen; Johan Schoukens; Ramon Bragós

The goal of this manuscript is to present a new methodology for real time analysis of time-varying electrical bioimpedance data. The approach assumes that the Fricke-Morse model of living tissues is meaningful and valid within the measured frequency range (10 kHz to 1 MHz). The parameters of this model are estimated in the whole frequency range with the presented method based on differential impedance analysis (DIA). The numerical accuracy of the developed approach has been validated and compared to complex nonlinear least square (CNLS) approach through simulations and also with experimental data from in vivo time-varying human lung tissue bioimpedance. The new developed method has demonstrated a promising performance for fast and easily interpretable information in real time.


Physiological Measurement | 2013

Harmonic impedance spectra identification from time-varying bioimpedance: theory and validation

Benjamin Sanchez; Ebrahim Louarroudi; Ramon Bragós; Rik Pintelon

The harmonic impedance spectra (HIS) of a time-varying bioimpedance Z(ω, t) is a new tool to better understand and describe complex time-varying biological systems with a distinctive periodic character as, for example, cardiovascular and respiratory systems. In this paper, the relationship between the experimental setup and the identification framework for estimating Z(ω, t) is set up. The theory developed applies to frequency response based impedance measurements from noisy current-voltage observations. We prove theoretically and experimentally that a voltage source (VS) and a current source (CS) analogue front end-based measurement lead, respectively, to a closed-loop and an open-loop HIS identification problem. Next, we delve into the estimation of the HIS by treating Z(ω, t), on the one hand, as a linear time-invariant (LTI) system within a short time window; and, on the other hand, as a linear periodically time-varying (PTV) system within the entire measurement interval. The LTI approach is based on the short-time Fourier transform (STFT), while the PTV approach relies on the information that is present in the skirts of the voltage and/or current spectra. In addition, direct and indirect methods are developed for estimating the HIS by using simple as well as more sophisticated techniques. Ultimately, the HIS and their uncertainty bounds are estimated from real measurements conducted on a periodically varying dummy impedance.

Collaboration


Dive into the Benjamin Sanchez's collaboration.

Top Co-Authors

Avatar

Ramon Bragós

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar

Seward B. Rutkove

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jia Li

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Gerd Vandersteen

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rik Pintelon

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Janice A. Nagy

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Adam Pacheck

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Hyeuknam Kwon

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kush Kapur

Boston Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge