Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Janice A. Nagy is active.

Publication


Featured researches published by Janice A. Nagy.


Nature Medicine | 2002

Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1

Aernout Luttun; Marc Tjwa; Lieve Moons; Yan Wu; Anne Angelillo-Scherrer; Fang Liao; Janice A. Nagy; Andrea T. Hooper; Josef Priller; Bert De Klerck; Veerle Compernolle; Evis Daci; Peter Bohlen; Mieke Dewerchin; Jean Marc Herbert; Roy A. Fava; Patrick Matthys; Geert Carmeliet; Desire Collen; Harold F. Dvorak; Daniel J. Hicklin; Peter Carmeliet

The therapeutic potential of placental growth factor (PlGF) and its receptor Flt1 in angiogenesis is poorly understood. Here, we report that PlGF stimulated angiogenesis and collateral growth in ischemic heart and limb with at least a comparable efficiency to vascular endothelial growth factor (VEGF). An antibody against Flt1 suppressed neovascularization in tumors and ischemic retina, and angiogenesis and inflammatory joint destruction in autoimmune arthritis. Anti-Flt1 also reduced atherosclerotic plaque growth and vulnerability, but the atheroprotective effect was not attributable to reduced plaque neovascularization. Inhibition of VEGF receptor Flk1 did not affect arthritis or atherosclerosis, indicating that inhibition of Flk1-driven angiogenesis alone was not sufficient to halt disease progression. The anti-inflammatory effects of anti-Flt1 were attributable to reduced mobilization of bone marrow–derived myeloid progenitors into the peripheral blood; impaired infiltration of Flt1-expressing leukocytes in inflamed tissues; and defective activation of myeloid cells. Thus, PlGF and Flt1 constitute potential candidates for therapeutic modulation of angiogenesis and inflammation.


Cancer and Metastasis Reviews | 1993

Vascular permeability factor (VPF, VEGF) in tumor biology

Donald R. Senger; Livingston Van De Water; Lawrence F. Brown; Janice A. Nagy; Kiang-Teck J. Yeo; Tet-Kin Yeo; Brygida Berse; Robert W. Jackman; Ann M. Dvorak; Harold F. Dvorak

SummaryVascular permeability factor (VPF), also known as vascular endothelial growth factor (VEGF), is a multifunctional cytokine expressed and secreted at high levels by many tumor cells of animal and human origin. As secreted by tumor cells, VPF/VEGF is a 34–42 kDa heparin-binding, dimeric, disulfide-bonded glycoprotein that acts directly on endothelial cells (EC) by way of specific receptors to activate phospholipase C and induce [Ca2+]i transients. Two high affinity VPF/VEGF receptors, both tyrosine kinases, have thus far been described. VPF/VEGF is likely to have a number of important roles in tumor biology related, but not limited to, the process of tumor angiogenesis. As a potent permeability factor, VPF/VEGF promotes extravasation of plasma fibrinogen, leading to fibrin deposition which alters the tumor extracellular matrix. This matrix promotes the ingrowth of macrophages, fibroblasts, and endothelial cells. Moreover, VPF/VEGF is a selective endothelial cell (EC) growth factorin vitro, and it presumably stimulates EC proliferationin vivo. Furthermore, VPF/VEGF has been found in animal and human tumor effusions by immunoassay and by functional assays and very likely accounts for the induction of malignant ascites. In addition to its role in tumors, VPF/VEGF has recently been found to have a role in wound healing and its expression by activated macrophages suggests that it probably also participates in certain types of chronic inflammation. VPF/VEGF is expressed in normal development and in certain normal adult organs, notably kidney, heart, adrenal gland and lung. Its functions in normal adult tissues are under investigation.


Current Topics in Microbiology and Immunology | 1999

Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis

Harold F. Dvorak; Janice A. Nagy; Dian Feng; Lawrence F. Brown; Ann M. Dvorak

This Chapter has reviewed the literature concerning VPF/VEGF as a potent vascular permeabilizing cytokine. In accord with this important role, microvessels have been found to be hyperpermeable to plasma proteins and other circulating macromolecules at sites where VPF/VEGF and its receptors are overexpressed, i.e., in tumors, healing wounds, retinopathies, many important inflammatory conditions and in certain physiological processes, such as ovulation and corpus luteum formation. Moreover, microvascular hyperpermeability to plasma proteins was shown to have an important consequence: the laying down of a fibrin-rich extracellular matrix. This provisional matrix, in turn, favors and supports the ingrowth of fibroblasts and endothelial cells which, together, transform the provisional matrix into the mature stroma characteristic of tumors and healed wounds. Finally, we have considered the pathways by which these and other circulating macromolecules cross the endothelium of normal and VPF/VEGF-permeabilized microvessels. These pathways include VVOs and trans-endothelial openings that have been variously interpreted as inter-endothelial cell gaps or trans-endothelial cell pores. At least some trans-endothelial cell pores may arise from VVOs. In conclusion, these data provide new insights into the mechanisms of angiogenesis and stroma formation, insights which are potentially applicable to a wide variety of disease states and which may lead to identification of new targets for therapeutic intervention.


Journal of Experimental Medicine | 2002

Vascular Permeability Factor/Vascular Endothelial Growth Factor Induces Lymphangiogenesis as well as Angiogenesis

Janice A. Nagy; Eliza Vasile; Dian Feng; Christian Sundberg; Lawrence F. Brown; Michael Detmar; Joel Lawitts; Laura E. Benjamin; Xiaolian Tan; Eleanor J. Manseau; Ann M. Dvorak; Harold F. Dvorak

Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF, VEGF-A) is a multifunctional cytokine with important roles in pathological angiogenesis. Using an adenoviral vector engineered to express murine VEGF-A164, we previously investigated the steps and mechanisms by which this cytokine induced the formation of new blood vessels in adult immunodeficient mice and demonstrated that the newly formed blood vessels closely resembled those found in VEGF-A–expressing tumors. We now report that, in addition to inducing angiogenesis, VEGF-A164 also induces a strong lymphangiogenic response. This finding was unanticipated because lymphangiogenesis has been thought to be mediated by other members of the VPF/VEGF family, namely, VEGF-C and VEGF-D. The new “giant” lymphatics generated by VEGF-A164 were structurally and functionally abnormal: greatly enlarged with incompetent valves, sluggish flow, and delayed lymph clearance. They closely resembled the large lymphatics found in lymphangiomas/lymphatic malformations, perhaps implicating VEGF-A in the pathogenesis of these lesions. Whereas the angiogenic response was maintained only as long as VEGF-A was expressed, giant lymphatics, once formed, became VEGF-A independent and persisted indefinitely, long after VEGF-A expression ceased. These findings raise the possibility that similar, abnormal lymphatics develop in other pathologies in which VEGF-A is overexpressed, e.g., malignant tumors and chronic inflammation.


EXS | 1997

Vascular permeability factor/vascular endothelial growth factor:A multifunctional angiogenic cytokine

Lawrence F. Brown; Michael Detmar; Kevin P. Claffey; Janice A. Nagy; Dian Feng; Ann M. Dvorak; Harold F. Dvorak

VPF/VEGF is a multifunctional cytokine that contributes to angiogenesis by both direct and indirect mechanisms. On the one hand, VPF/VEGF stimulates the endothelial cells lining nearby microvessels to proliferate, to migrate and to alter their pattern of gene expression. On the other hand, VPF/VEGF renders these same microvascular endothelial cells hyperpermeable so that they spill plasma proteins into the extravascular space, leading to profound alterations in the extracellular matrix that favor angiogenesis. These same principles apply in tumors, in several examples of non-neoplastic pathology, and in physiological processes that involve angiogenesis and new stroma generation. In all of these examples, microvascular hyperpermeability and the introduction of a provisional, plasma-derived matrix precede and accompany the onset of endothelial cell division and new blood vessel formation. It would seem, therefore, that tumors have made use of fundamental pathways that developed in multicellular organisms for purposes of tissue defense, renewal and repair. VPF/VEGF, therefore, has taught us something new about angiogenesis; namely, that vascular hyperpermeability and consequent plasma protein extravasation are important--perhaps essential--elements in its generation. However, this finding raises a paradox. While VPF/VEGF induces vascular hyperpermeability, other potent angiogenic factors apparently do not, at least in sub-toxic concentrations that are more than sufficient to induce angiogenesis (Connolly et al., 1989a). Nonetheless, wherever angiogenesis has been studied, the newly generated vessels have been found to be hyperpermeable. How, therefore, do angiogenic factors other than VPF/VEGF lead to the formation of new and leaky blood vessels? We do not as yet have a complete answer to this question. One possibility is that at least some angiogenic factors mediate their effect by inducing or stimulating VPF/VEGF expression. In fact, there are already clear example of this. A number of putative angiogenic factors including small molecules (e.g. prostaglandins, adenosine) as well as many cytokines (e.g. TGF-alpha, bFGF, TGF-beta, TNF-alpha, KGF, PDGF) have all been shown to upregulate VPF/VEGF expression. Further studies that elucidate the crosstalk among various angiogenic factors are likely to contribute significantly to a better understanding of the mechanisms by which new blood vessels are formed in health and in disease.


Laboratory Investigation | 2000

Heterogeneity of the angiogenic response induced in different normal adult tissues by vascular permeability factor/vascular endothelial growth factor.

Anna Pettersson; Janice A. Nagy; Lawrence F. Brown; Christian Sundberg; Ellen S. Morgan; Jungles S; Robert Carter; José Eduardo Krieger; Eleanor J. Manseau; Harvey Vs; Isabelle A. Eckelhoefer; Dian Feng; Ann M. Dvorak; Richard C. Mulligan; Harold F. Dvorak

Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) is an angiogenic cytokine with potential for the treatment of tissue ischemia. To investigate the properties of the new blood vessels induced by VPF/VEGF, we injected an adenoviral vector engineered to express murine VPF/VEGF164 into several normal tissues of adult nude mice or rats. A dose-dependent angiogenic response was induced in all tissues studied but was more intense and persisted longer (months) in skin and fat than in heart or skeletal muscle (≤3 weeks). The initial response (within 18 hours) was identical in all tissues studied and was characterized by microvascular hyperpermeability, edema, deposition of an extravascular fibrin gel, and the formation of enlarged, thin-walled pericyte-poor vessels (“mother” vessels). Mother vessels developed from preexisting microvessels after pericyte detachment and basement membrane degradation. Mother vessels were transient structures that evolved variably in different tissues into smaller daughter vessels, disorganized vessel tangles (glomeruloid bodies), and medium-sized muscular arteries and veins. Vascular structures closely resembling mother vessels and each mother vessel derivative have been observed in benign and malignant tumors, in other examples of pathological and physiological angiogenesis, and in vascular malformations. Together these data suggest that VPF/VEGF has a role in the pathogenesis of these entities. They also indicate that the angiogenic response induced by VPF/VEGF is heterogeneous and tissue specific. Finally, the muscular vessels that developed from mother vessels in skin and perimuscle fat have the structure of collaterals and could be useful clinically in the relief of tissue ischemia.


Biochimica et Biophysica Acta | 1989

Pathogenesis of tumor stroma generation: a critical role for leaky blood vessels and fibrin deposition

Janice A. Nagy; Lawrence F. Brown; Donald R. Senger; Naomi Lanir; Livingston Van De Water; Ann M. Dvorak; Harold F. Dvorak

Tumor stroma formation results from the interaction of tumor cells and their products with the host and certain of its normal defense mechanisms, particularly the clotting and fibrinolytic systems. It is a process in which tumor cells render local venules and veins hyperpermeable with the result that fibrinogen and other proteins extravasate and clot, forming an extravascular crosslinked fibrin gel. Coagulation is mediated by an interaction between extravasated plasma clotting factors and tumor-associated and perhaps other tissue procoagulants. Parallel activation of the fibrinolytic system leads to substantial fibrin turnover, but fibrin nonetheless accumulates in amounts, variable from tumor to tumor, that are sufficient to provide a provisional stroma. This provisional stroma imposes on tumor cells a structure that persists even as tumor cells multiply and as the fibrin provisional stroma is replaced by mature connective tissue. The provisional fibrin stroma also serves to regulate the influx of macrophages, and perhaps other inflammatory cells, but at the same time, and in ways that are not fully understood, facilitates the inward migration of new blood vessels and fibroblasts, integral components of mature tumor stroma. Ascites tumors differ from solid tumors in that fibrin gel is not ordinarily deposited in body cavities and, as a result, there is no provisional stroma to impose an initial structure. Tumor stroma generation resembles the process of wound healing in many respects. However, it differs in the mechanism of its initiation, and in the apparent lack of a role for platelets. It also differs fundamentally in that invading tumor cells continually render new vessels hyperpermeable to plasma, thus perpetuating the cycle of extravascular fibrin deposition. In this sense, tumors behave as wounds that do not heal. Largely neglected in this review has been discussion of the numerous cytokines, mitogens, and growth factors that are widely believed to play important roles in tumor angiogenesis and wound healing; i.e., PDGF, FGF, EGF, TGF alpha, TGF beta, TNF, interferons, etc. This omission has been intentional, and for two reasons. First, these cytokines have already received considerable attention [100,123-128]. Second, it is not yet clear how closely the actions of these molecules, as described in vitro, relate to their functions in vivo. At present we are deluged with a surfeit of factors that have the capacity to induce new blood vessel formation in angiogenesis assays; these factors include not only peptides but lipids and even ions [126,129-131].(ABSTRACT TRUNCATED AT 400 WORDS)


Angiogenesis | 2008

Vascular permeability, vascular hyperpermeability and angiogenesis

Janice A. Nagy; Laura E. Benjamin; Ann M. Dvorak; Harold F. Dvorak

The vascular system has the critical function of supplying tissues with nutrients and clearing waste products. To accomplish these goals, the vasculature must be sufficiently permeable to allow the free, bidirectional passage of small molecules and gases and, to a lesser extent, of plasma proteins. Physiologists and many vascular biologists differ as to the definition of vascular permeability and the proper methodology for its measurement. We review these conflicting views, finding that both provide useful but complementary information. Vascular permeability by any measure is dramatically increased in acute and chronic inflammation, cancer, and wound healing. This hyperpermeability is mediated by acute or chronic exposure to vascular permeabilizing agents, particularly vascular permeability factor/vascular endothelial growth factor (VPF/VEGF, VEGF-A). We demonstrate that three distinctly different types of vascular permeability can be distinguished, based on the different types of microvessels involved, the composition of the extravasate, and the anatomic pathways by which molecules of different size cross-vascular endothelium. These are the basal vascular permeability (BVP) of normal tissues, the acute vascular hyperpermeability (AVH) that occurs in response to a single, brief exposure to VEGF-A or other vascular permeabilizing agents, and the chronic vascular hyperpermeability (CVH) that characterizes pathological angiogenesis. Finally, we list the numerous (at least 25) gene products that different authors have found to affect vascular permeability in variously engineered mice and classify them with respect to their participation, as far as possible, in BVP, AVH and CVH. Further work will be required to elucidate the signaling pathways by which each of these molecules, and others likely to be discovered, mediate the different types of vascular permeability.


International Archives of Allergy and Immunology | 1995

Vascular Permeability Factor/Vascular Endothelial Growth Factor: An Important Mediator of Angiogenesis in Malignancy and Inflammation

Harold F. Dvorak; Michael Detmar; Kevin P. Claffey; Janice A. Nagy; Livingston Van De Water; Donald R. Senger

Vascular permeability factor (VPF), also known as vascular endothelial growth factor (VEGF), is a multifunctional cytokine that is overexpressed in many transplantable animal and autochtonous human cancers, in healing wounds, and in chronic inflammatory disorders such as psoriasis and rheumatoid arthritis. All of these entities are characterized by angiogenesis, altered extracellular matrix, and variable degrees of hypoxia. In addition, two VPF/VEGF receptors, flt-1 and kdr, are overexpressed by endothelial cells that line the microvessels that supply these tumors/inflammatory reactions. On the basis of these and other data, we have proposed a model of angiogenesis in which VPF/VEGF plays a central role: this model is applicable to tumors and also to the angiogenesis that occurs in non-neoplastic processes.


Clinical Cancer Research | 2005

Antiangiogenic properties of gold nanoparticles.

Priyabrata Mukherjee; Resham Bhattacharya; Ping Wang; Ling Wang; Sujit Basu; Janice A. Nagy; Anthony Atala; Debabrata Mukhopadhyay; Shay Soker

Here, we report an intrinsic property of gold nanoparticles (nanogold): they can interact selectively with heparin-binding glycoproteins and inhibit their activity. Gold nanoparticles specifically bound vascular permeability factor/vascular endothelial growth factor (VPF/VEGF)-165 and basic fibroblast growth factor, two endothelial cell mitogens and mediators of angiogenesis resulting in inhibition of endothelial/fibroblast cell proliferation in vitro and VEGF-induced permeability as well as angiogenesis in vivo. In contrast, nanogold did not inhibit VEGF-121 or epidermal growth factor, two non–heparin-binding growth factors, mediated cell proliferation. Gold nanoparticles significantly inhibited VEGF receptor-2 phosphorylation, intracellular calcium release, and migration and RhoA activation in vitro. These results report for the first time a novel property of gold nanoparticles to bind heparin-binding proteins and thereby inhibit their subsequent signaling events.

Collaboration


Dive into the Janice A. Nagy's collaboration.

Top Co-Authors

Avatar

Harold F. Dvorak

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ann M. Dvorak

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Dian Feng

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lawrence F. Brown

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Donald R. Senger

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura E. Benjamin

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Robert W. Jackman

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Seward B. Rutkove

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Shou-Ching Shih

Beth Israel Deaconess Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge