Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin T. Diroll is active.

Publication


Featured researches published by Benjamin T. Diroll.


Nature Communications | 2016

Large optical nonlinearity of ITO nanorods for sub-picosecond all-optical modulation of the full-visible spectrum

Peijun Guo; Richard D. Schaller; Leonidas E. Ocola; Benjamin T. Diroll; J. B. Ketterson; R. P. H. Chang

Nonlinear optical responses of materials play a vital role for the development of active nanophotonic and plasmonic devices. Optical nonlinearity induced by intense optical excitation of mobile electrons in metallic nanostructures can provide large-amplitude, dynamic tuning of their electromagnetic response, which is potentially useful for all-optical processing of information and dynamic beam control. Here we report on the sub-picosecond optical nonlinearity of indium tin oxide nanorod arrays (ITO-NRAs) following intraband, on-plasmon-resonance optical pumping, which enables modulation of the full-visible spectrum with large absolute change of transmission, favourable spectral tunability and beam-steering capability. Furthermore, we observe a transient response in the microsecond regime associated with slow lattice cooling, which arises from the large aspect-ratio and low thermal conductivity of ITO-NRAs. Our results demonstrate that all-optical control of light can be achieved by using heavily doped wide-bandgap semiconductors in their transparent regime with speed faster than that of noble metals.


ACS Nano | 2017

Conformal Coating of a Phase Change Material on Ordered Plasmonic Nanorod Arrays for Broadband All-Optical Switching

Peijun Guo; Matthew S. Weimer; Jonathan D. Emery; Benjamin T. Diroll; Xinqi Chen; Adam S. Hock; R. P. H. Chang; Alex B. F. Martinson; Richard D. Schaller

Actively tunable optical transmission through artificial metamaterials holds great promise for next-generation nanophotonic devices and metasurfaces. Plasmonic nanostructures and phase change materials have been extensively studied to this end due to their respective strong interactions with light and tunable dielectric constants under external stimuli. Seamlessly integrating plasmonic components with phase change materials, as demonstrated in the present work, can facilitate phase change by plasmonically enabled light confinement and meanwhile make use of the high sensitivity of plasmon resonances to the variation of dielectric constant associated with the phase change. The hybrid platform here is composed of plasmonic indium-tin-oxide nanorod arrays (ITO-NRAs) conformally coated with an ultrathin layer of a prototypical phase change material, vanadium dioxide (VO2), which enables all-optical modulation of the infrared as well as the visible spectral ranges. The interplay between the intrinsic plasmonic nonlinearity of ITO-NRAs and the phase transition induced permittivity change of VO2 gives rise to spectral and temporal responses that cannot be achieved with individual material components alone.


ACS Nano | 2017

Size-Dependent Biexciton Quantum Yields and Carrier Dynamics of Quasi-Two-Dimensional Core/Shell Nanoplatelets

Xuedan Ma; Benjamin T. Diroll; Wooje Cho; Igor Fedin; Richard D. Schaller; Dmitri V. Talapin; Stephen K. Gray; Gary P. Wiederrecht; David J. Gosztola

Quasi-two-dimensional nanoplatelets (NPLs) possess fundamentally different excitonic properties from zero-dimensional quantum dots. We study lateral size-dependent photon emission statistics and carrier dynamics of individual NPLs using second-order photon correlation (g(2)(τ)) spectroscopy and photoluminescence (PL) intensity-dependent lifetime analysis. Room-temperature radiative lifetimes of NPLs can be derived from maximum PL intensity periods in PL time traces. It first decreases with NPL lateral size and then stays constant, deviating from the electric dipole approximation. Analysis of the PL time traces further reveals that the single exciton quantum yield in NPLs decreases with NPL lateral size and increases with protecting shell thickness, indicating the importance of surface passivation on NPL emission quality. Second-order photon correlation (g(2)(τ)) studies of single NPLs show that the biexciton quantum yield is strongly dependent on the lateral size and single exciton quantum yield of the NPLs. In large NPLs with unity single exciton quantum yield, the corresponding biexciton quantum yield can reach unity. These findings reveal that by careful growth control and core-shell material engineering, NPLs can be of great potential for light amplification and integrated quantum photonic applications.


Journal of the American Chemical Society | 2016

Surface-Area-Dependent Electron Transfer Between Isoenergetic 2D Quantum Wells and a Molecular Acceptor.

Benjamin T. Diroll; Igor Fedin; Pierre Darancet; Dmitri V. Talapin; Richard D. Schaller

We report measurements of electron transfer rates for four isoenergetic donor-acceptor pairs comprising a molecular electron acceptor, methylviologen (MV), and morphology-controlled colloidal semiconductor nanoparticles of CdSe. The four nanoparticles include a spherical quantum dot (QD) and three differing lateral areas of 4-monolayer-thick nanoplatelets (NPLs), each with a 2.42 eV energy gap. As such, the measurements, performed via ultrafast photoluminescence, relate the dependence of charge transfer rate on the spatial extent of the initial electron-hole pair wave function explicitly, which we show for the first time to be related to surface area in this regime that is intermediate between homogeneous and heterogeneous charge transfer as well as 2D to 0D electron transfer. The observed nonlinear dependence of rate with surface area is attributed to exciton delocalization within each structure, which we show via temperature-dependent absorption measurements remains constant.


Nano Letters | 2018

Unique Optical Properties of Methylammonium Lead Iodide Nanocrystals Below the Bulk Tetragonal-Orthorhombic Phase Transition

Benjamin T. Diroll; Peijun Guo; Richard D. Schaller

Methylammonium (MA) and formamidinium (FA) lead halides are widely studied for their potential as low-cost, high-performance optoelectronic materials. Here, we present measurements of visible and IR absorption, steady state, and time-resolved photoluminescence from 300 K to cryogenic temperatures. Whereas FAPbI3 nanocrystals (NCs) are found to behave in a very similar manner to reported bulk behavior, colloidal nanocrystals of MAPbI3 show a departure from the low-temperature optical behavior of the bulk material. Using photoluminescence, visible, and infrared absorption measurements, we demonstrate that unlike single crystals and polycrystalline films NCs of MAPbI3 do not undergo optical changes associated with the bulk tetragonal-to-orthorhombic phase transition, which occurs near 160 K. We find no evidence of frozen organic cation rotation to as low as 80 K or altered exciton binding energy to as low as 3 K in MAPbI3 NCs. Similar results are obtained in MAPbI3 NCs ranging from 20 to over 100 nm and in morphologies including cubes and plates. Colloidal MAPbI3 NCs therefore offer a window into the properties of the solar-relevant, room-temperature phase of MAPbI3 at temperatures inaccessible with single crystals or polycrystalline samples. Exploiting this phenomenon, these measurements reveal the existence of an optically passive photoexcited state close to the band edge and persistent slow Auger recombination at low temperature.


Nano Letters | 2018

Material Dimensionality Effects on Electron Transfer Rates Between CsPbBr3 and CdSe Nanoparticles

Alexandra Brumberg; Benjamin T. Diroll; Georgian Nedelcu; Matthew E. Sykes; Yuzi Liu; Samantha M. Harvey; Michael R. Wasielewski; Maksym V. Kovalenko; Richard D. Schaller

Films containing mixtures of zero- or two-dimensional nanostructures (quantum dots or nanoplatelets) were prepared in order to investigate the impacts of dimensionality on electronic interactions. Electron transfer from CsPbBr3 to CdSe was observed in all of the mixtures, regardless of particle dimensionality, and characterized via both static and transient absorption and photoluminescence spectroscopies. We find that mixtures containing nanoplatelets as the electron acceptor (CdSe) undergo charge transfer more rapidly than those containing quantum dots. We believe the faster charge transfer observed with nanoplatelets may arise from the extended spatial area of the CdSe nanoplatelets and/or the continuous density of acceptor states that are present in nanoplatelets. These results bolster the use of one- or two-dimensional nanomaterials in the place of zero-dimensional quantum dots in the design of related optoelectronic devices such as solar cells, light-emitting diodes, and photocatalysts and further offer the prospect of fewer required hopping events to transport carriers due to the larger spatial extent of the particles.


Journal of Physical Chemistry Letters | 2018

Elevated Temperature Photophysical Properties and Morphological Stability of CdSe and CdSe/CdS Nanoplatelets

Clare E. Rowland; Igor Fedin; Benjamin T. Diroll; Yuzi Liu; Dmitri V. Talapin; Richard D. Schaller

Elevated temperature optoelectronic performance of semiconductor nanomaterials remains an important issue for applications. Here we examine 2D CdSe nanoplatelets (NPs) and CdS/CdSe/CdS shell/core/shell sandwich NPs at temperatures ranging from 300 to 700 K using static and transient spectroscopies as well as in situ transmission electron microscopy. NPs exhibit reversible changes in PL intensity, spectral position, and emission line width with temperature elevation up to ∼500 K, losing a factor of ∼8 to 10 in PL intensity at 400 K relative to ambient. Temperature elevation above ∼500 K yields thickness-dependent, irreversible degradation in optical properties. Electron microscopy relates stability of the core-only NP morphology up to 555 and 600 K for the four and five monolayer NPs, respectively, followed by sintering and evaporation at still higher temperatures. Reversible PL loss, based on differences in decay dynamics between time-resolved photoluminescence and transient absorption, results primarily from hole trapping in both NPs and sandwich NPs.


Nano Letters | 2017

Ultrafast Silicon Photonics with Visible to Mid-Infrared Pumping of Silicon Nanocrystals

Benjamin T. Diroll; Katelyn S. Schramke; Peijun Guo; Uwe R. Kortshagen; Richard D. Schaller

Dynamic optical control of infrared (IR) transparency and refractive index is achieved using boron-doped silicon nanocrystals excited with mid-IR optical pulses. Unlike previous silicon-based optical switches, large changes in transmittance are achieved without a fabricated structure by exploiting strong light coupling of the localized surface plasmon resonance (LSPR) produced from free holes of p-type silicon nanocrystals. The choice of optical excitation wavelength allows for selectivity between hole heating and carrier generation through intraband or interband photoexcitation, respectively. Mid-IR optical pumping heats the free holes of p-Si nanocrystals to effective temperatures greater than 3500 K. Increases of the hole effective mass at high effective hole temperatures lead to a subpicosecond change of the dielectric function, resulting in a redshift of the LSPR, modulating mid-IR transmission by as much as 27%, and increasing the index of refraction by more than 0.1 in the mid-IR. Low hole heat capacity dictates subpicosecond hole cooling, substantially faster than carrier recombination, and negligible heating of the Si lattice, permitting mid-IR optical switching at terahertz repetition frequencies. Further, the energetic distribution of holes at high effective temperatures partially reverses the Burstein-Moss effect, permitting the modulation of transmittance at telecommunications wavelengths. The results presented here show that doped silicon, particularly in micro- or nanostructures, is a promising dynamic metamaterial for ultrafast IR photonics.


Nature Communications | 2018

Slow thermal equilibration in methylammonium lead iodide revealed by transient mid-infrared spectroscopy

Peijun Guo; Jue Gong; Sridhar Sadasivam; Yi Xia; Tze-Bin Song; Benjamin T. Diroll; Constantinos C. Stoumpos; J. B. Ketterson; Mercouri G. Kanatzidis; Maria K. Y. Chan; Pierre Darancet; Tao Xu; Richard D. Schaller

Hybrid organic–inorganic perovskites are emerging semiconductors for cheap and efficient photovoltaics and light-emitting devices. Different from conventional inorganic semiconductors, hybrid perovskites consist of coexisting organic and inorganic sub-lattices, which present disparate atomic masses and bond strengths. The nanoscopic interpenetration of these disparate components, which lack strong electronic and vibrational coupling, presents fundamental challenges to the understanding of charge and heat dissipation. Here we study phonon population and equilibration processes in methylammonium lead iodidexa0(MAPbI3) by transiently probing the vibrational modes of the organic sub-lattice following above-bandgap optical excitation. We observe inter-sub-lattice thermal equilibration on timescales ranging from hundreds of picoseconds to a couple of nanoseconds. As supported by a two-temperature model based on first-principles calculations, the slow thermal equilibration is attributable to the sequential phonon populations of the inorganic and organic sub-lattices, respectively. The observed long-lasting thermal non-equilibrium offers insights into thermal transport and heat management of the emergent hybrid material class.Hybrid organic-inorganic perovskites are emerging materials for efficient photovoltaics; however understanding how charge/heat dissipates inside the material remains a challenge. Here, the authors use a spectroscopic approach to observe unusually slow thermal equilibration between the organic and inorganic components.


Nano Letters | 2018

Anisotropic Photoluminescence from Isotropic Optical Transition Dipoles in Semiconductor Nanoplatelets

Xuedan Ma; Benjamin T. Diroll; Wooje Cho; Igor Fedin; Richard D. Schaller; Dmitri V. Talapin; Gary P. Wiederrecht

Many important light-matter coupling and energy-transfer processes depend critically on the dimensionality and orientation of optical transition dipoles in emitters. We investigate individual quasi-two-dimensional nanoplatelets (NPLs) using higher-order laser scanning microscopy and find that absorption dipoles in NPLs are isotropic in three dimensions at the excitation wavelength. Correlated polarization studies of the NPLs reveal that their emission polarization is strongly dependent on the aspect ratio of the lateral dimensions. Our simulations reveal that this emission anisotropy can be readily explained by the electric field renormalization effect caused by the dielectric contrast between the NPLs and the surrounding medium, and we conclude that emission dipoles in NPLs are isotropic in the plane of the NPLs. Our study presents an approach for disentangling the effects of dipole degeneracy and electric field renormalization on emission anisotropy and can be adapted for studying the intrinsic optical transition dipoles of various nanostructures.

Collaboration


Dive into the Benjamin T. Diroll's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peijun Guo

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wooje Cho

University of Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jue Gong

Northern Illinois University

View shared research outputs
Researchain Logo
Decentralizing Knowledge