Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin T. Fuller is active.

Publication


Featured researches published by Benjamin T. Fuller.


Science | 2015

Genomic evidence for the Pleistocene and recent population history of Native Americans

Maanasa Raghavan; Matthias Steinrücken; Kelley Harris; Stephan Schiffels; Simon Rasmussen; Michael DeGiorgio; Anders Albrechtsen; Cristina Valdiosera; María C. Ávila-Arcos; Anna-Sapfo Malaspinas; Anders Eriksson; Ida Moltke; Mait Metspalu; Julian R. Homburger; Jeffrey D. Wall; Omar E. Cornejo; J. Víctor Moreno-Mayar; Thorfinn Sand Korneliussen; Tracey Pierre; Morten Rasmussen; Paula F. Campos; Peter de Barros Damgaard; Morten E. Allentoft; John Lindo; Ene Metspalu; Ricardo Rodríguez-Varela; Josefina Mansilla; Celeste Henrickson; Andaine Seguin-Orlando; Helena Malmström

Genetic history of Native Americans Several theories have been put forth as to the origin and timing of when Native American ancestors entered the Americas. To clarify this controversy, Raghavan et al. examined the genomic variation among ancient and modern individuals from Asia and the Americas. There is no evidence for multiple waves of entry or recurrent gene flow with Asians in northern populations. The earliest migrations occurred no earlier than 23,000 years ago from Siberian ancestors. Amerindians and Athabascans originated from a single population, splitting approximately 13,000 years ago. Science, this issue 10.1126/science.aab3884 Genetic variation within ancient and extant Native American populations informs on their migration into the Americas. INTRODUCTION The consensus view on the peopling of the Americas is that ancestors of modern Native Americans entered the Americas from Siberia via the Bering Land Bridge and that this occurred at least ~14.6 thousand years ago (ka). However, the number and timing of migrations into the Americas remain controversial, with conflicting interpretations based on anatomical and genetic evidence. RATIONALE In this study, we address four major unresolved issues regarding the Pleistocene and recent population history of Native Americans: (i) the timing of their divergence from their ancestral group, (ii) the number of migrations into the Americas, (iii) whether there was ~15,000 years of isolation of ancestral Native Americans in Beringia (Beringian Incubation Model), and (iv) whether there was post-Pleistocene survival of relict populations in the Americas related to Australo-Melanesians, as suggested by apparent differences in cranial morphologies between some early (“Paleoamerican”) remains and those of more recent Native Americans. We generated 31 high-coverage modern genomes from the Americas, Siberia, and Oceania; 23 ancient genomic sequences from the Americas dating between ~0.2 and 6 ka; and SNP chip genotype data from 79 present-day individuals belonging to 28 populations from the Americas and Siberia. The above data sets were analyzed together with published modern and ancient genomic data from worldwide populations, after masking some present-day Native Americans for recent European admixture. RESULTS Using three different methods, we determined the divergence time for all Native Americans (Athabascans and Amerindians) from their Siberian ancestors to be ~20 ka, and no earlier than ~23 ka. Furthermore, we dated the divergence between Athabascans (northern Native American branch, together with northern North American Amerindians) and southern North Americans and South and Central Americans (southern Native American branch) to be ~13 ka. Similar divergence times from East Asian populations and a divergence time between the two branches that is close in age to the earliest well-established archaeological sites in the Americas suggest that the split between the branches occurred within the Americas. We additionally found that several sequenced Holocene individuals from the Americas are related to present-day populations from the same geographical regions, implying genetic continuity of ancient and modern populations in some parts of the Americas over at least the past 8500 years. Moreover, our results suggest that there has been gene flow between some Native Americans from both North and South America and groups related to East Asians and Australo-Melanesians, the latter possibly through an East Asian route that might have included ancestors of modern Aleutian Islanders. Last, using both genomic and morphometric analyses, we found that historical Native American groups such as the Pericúes and Fuego-Patagonians were not “relicts” of Paleoamericans, and hence, our results do not support an early migration of populations directly related to Australo-Melanesians into the Americas. CONCLUSION Our results provide an upper bound of ~23 ka on the initial divergence of ancestral Native Americans from their East Asian ancestors, followed by a short isolation period of no more than ~8000 years, and subsequent entrance and spread across the Americas. The data presented are consistent with a single-migration model for all Native Americans, with later gene flow from sources related to East Asians and, indirectly, Australo-Melanesians. The single wave diversified ~13 ka, likely within the Americas, giving rise to the northern and southern branches of present-day Native Americans. Population history of present-day Native Americans. The ancestors of all Native Americans entered the Americas as a single migration wave from Siberia (purple) no earlier than ~23 ka, separate from the Inuit (green), and diversified into “northern” and “southern” Native American branches ~13 ka. There is evidence of post-divergence gene flow between some Native Americans and groups related to East Asians/Inuit and Australo-Melanesians (yellow). How and when the Americas were populated remains contentious. Using ancient and modern genome-wide data, we found that the ancestors of all present-day Native Americans, including Athabascans and Amerindians, entered the Americas as a single migration wave from Siberia no earlier than 23 thousand years ago (ka) and after no more than an 8000-year isolation period in Beringia. After their arrival to the Americas, ancestral Native Americans diversified into two basal genetic branches around 13 ka, one that is now dispersed across North and South America and the other restricted to North America. Subsequent gene flow resulted in some Native Americans sharing ancestry with present-day East Asians (including Siberians) and, more distantly, Australo-Melanesians. Putative “Paleoamerican” relict populations, including the historical Mexican Pericúes and South American Fuego-Patagonians, are not directly related to modern Australo-Melanesians as suggested by the Paleoamerican Model.


Science | 2014

The genetic prehistory of the New World Arctic

Maanasa Raghavan; Michael DeGiorgio; Anders Albrechtsen; Ida Moltke; Pontus Skoglund; Thorfinn Sand Korneliussen; Bjarne Grønnow; Martin Appelt; Hans Christian Gulløv; T. Max Friesen; William W. Fitzhugh; Helena Malmström; Simon Rasmussen; Jesper Olsen; Linea Melchior; Benjamin T. Fuller; Simon M. Fahrni; Thomas W. Stafford; Vaughan Grimes; M. A. Priscilla Renouf; Jerome S. Cybulski; Niels Lynnerup; Marta Mirazón Lahr; Kate Britton; Rick Knecht; Jette Arneborg; Mait Metspalu; Omar E. Cornejo; Anna-Sapfo Malaspinas; Yong Wang

Introduction Humans first peopled the North American Arctic (northern Alaska, Canada, and Greenland) around 6000 years ago, leaving behind a complex archaeological record that consisted of different cultural units and distinct ways of life, including the Early Paleo-Eskimos (Pre-Dorset/Saqqaq), the Late Paleo-Eskimos (Early Dorset, Middle Dorset, and Late Dorset), and the Thule cultures. Genetic origins of Paleo-Eskimos and Neo-Eskimos. All Paleo-Eskimos represent a single migration pulse from Siberia into the Americas, independent of the Neo-Eskimo Thule people (ancestors of modern-day Inuit) and the related extinct Sadlermiut population. The Siberian Birnirk people were likely cultural and genetic ancestors of modern-day Inuit. We also show ancient admixture between the Paleo- and Neo-Eskimo lineages, occurring at least 4000 years ago. Rationale We addressed the genetic origins and relationships of the various New World Arctic cultures to each other and to modern-day populations in the region. We obtained 26 genome-wide sequences and 169 mitochondrial DNA sequences from ancient human bone, teeth, and hair samples from Arctic Siberia, Alaska, Canada, and Greenland, and high-coverage genomes of two present-day Greenlandic Inuit, two Siberian Nivkhs, one Aleutian Islander, and two Athabascan Native Americans. Twenty-seven ancient samples were radiocarbon dated for accurate cultural assignment, of which 25 were corrected for marine reservoir effect to account for the dominant marine component in these individuals’ diets. Results Nuclear and mitochondrial DNA data unequivocally show that the Paleo-Eskimos are closer to each other than to any other present-day population. The Thule culture represents a distinct people that are genetic and cultural ancestors of modern-day Inuit. We additionally find the Siberian Birnirk culture (6th to 7th century CE) as likely cultural and genetic ancestors of the Thule. The extinct Sadlermiut people from the Hudson Bay region (15th to 19th century CE), considered to be Dorset remnants, are genetically closely related to Thule/Inuit, rather than the Paleo-Eskimos. Moreover, there is no evidence of matrilineal gene flow between Dorset or Thule groups with neighboring Norse (Vikings) populations settling in the Arctic around 1000 years ago. However, we do detect gene flow between the Paleo-Eskimo and Neo-Eskimo lineages, dating back to at least 4000 years. Conclusion Our study has a number of important implications: Paleo-Eskimos likely represent a single migration pulse into the Americas from Siberia, separate from the ones giving rise to the Inuit and other Native Americans, including Athabascan speakers. Paleo-Eskimos, despite showing cultural differences across time and space, constituted a single population displaying genetic continuity for more than 4000 years. On the contrary, the Thule people, ancestors of contemporary Inuit, represent a population replacement of the Paleo-Eskimos that occurred less than 700 years ago. The long-term genetic continuity of the Paleo-Eskimo gene pool and lack of evidence of Native American admixture suggest that the Saqqaq and Dorset people were largely living in genetic isolation after entering the New World. Thus, the Paleo-Eskimo technological innovations and changes through time, as evident from the archaeological record, seem to have occurred solely by movement of ideas within a single resident population. This suggests that cultural similarities and differences are not solid proxies for population movements and migrations into new and dramatically different environments, as is often assumed. Arctic genetics comes in from the cold Despite a well-characterized archaeological record, the genetics of the people who inhabit the Arctic have been unexplored. Raghavan et al. sequenced ancient and modern genomes of individuals from the North American Arctic (see the Perspective by Park). Analyses of these genomes indicate that the Arctic was colonized 6000 years ago by a migration separate from the one that gave rise to other Native American populations. Furthermore, the original paleo-inhabitants of the Arctic appear to have been completely replaced approximately 700 years ago. Science, this issue 10.1126/science.1255832; see also p. 1004 Early Arctic humans differed from both present-day Inuit and Native Americans. [Also see Perspective by Park] The New World Arctic, the last region of the Americas to be populated by humans, has a relatively well-researched archaeology, but an understanding of its genetic history is lacking. We present genome-wide sequence data from ancient and present-day humans from Greenland, Arctic Canada, Alaska, Aleutian Islands, and Siberia. We show that Paleo-Eskimos (~3000 BCE to 1300 CE) represent a migration pulse into the Americas independent of both Native American and Inuit expansions. Furthermore, the genetic continuity characterizing the Paleo-Eskimo period was interrupted by the arrival of a new population, representing the ancestors of present-day Inuit, with evidence of past gene flow between these lineages. Despite periodic abandonment of major Arctic regions, a single Paleo-Eskimo metapopulation likely survived in near-isolation for more than 4000 years, only to vanish around 700 years ago.


Current Opinion in Clinical Nutrition and Metabolic Care | 2010

Advances in natural stable isotope ratio analysis of human hair to determine nutritional and metabolic status

Klaus J. Petzke; Benjamin T. Fuller; Cornelia C. Metges

Purpose of reviewWe review the literature on the use of stable isotope ratios at natural abundance to reveal information about dietary habits and specific nutrient intakes in human hair protein (keratin) and amino acids. In particular, we examine whether hair isotopic compositions can be used as unbiased biomarkers to provide information about nutritional status, metabolism, and diseases. Recent findingsAlthough the majority of research on the stable isotope ratio analysis of hair has focused on bulk protein, methods have been recently employed to examine amino acid-specific isotope ratios using gas chromatography or liquid chromatography coupled to an isotope ratio mass spectrometer. The isotopic measurement of amino acids has the potential to answer research questions on amino acid nutrition, metabolism, and disease processes and can contribute to a better understanding of the variations in bulk protein isotope ratio values. First results suggest that stable isotope ratios are promising as unbiased nutritional biomarkers in epidemiological research. However, variations in stable isotope ratios of human hair are also influenced by nutrition-dependent nitrogen balance, and more controlled clinical research is needed to examine these effects in human hair. SummaryStable isotope ratio analysis at natural abundance in human hair protein offers a noninvasive method to reveal information about long-term nutritional exposure to specific nutrients, nutritional habits, and in the diagnostics of diseases leading to nutritional stress and impaired nitrogen balance.


Analytical Biochemistry | 2009

A three-phase liquid chromatographic method for δ13C analysis of amino acids from biological protein hydrolysates using liquid chromatography–isotope ratio mass spectrometry

Colin I. Smith; Benjamin T. Fuller; Kyungcheol Choy; Michael P. Richards

We report a three-phase chromatographic method for the separation and analysis of delta(13)C values of underivatized amino acids from biological proteins (keratin, collagen, and casein) using liquid chromatography-isotope ratio mass spectrometry (LC-IRMS). Both precision and accuracy of delta(13)C values for standard amino acid mixtures over the range of approximately 8 to 1320 ng of carbon per amino acid on the column were assessed. The precision of delta(13)C values of amino acids was found to be better at higher concentrations, whereas accuracy improved at lower concentrations. The optimal performance for this method was achieved with between 80 and 660 ng of carbon of each amino acid on the column. At amino acid amounts lower than 20 ng of carbon on the column, precision and accuracy may become compromised. The application of this new three-phase chromatographic technique will allow the analysis of delta(13)C of amino acids to be carried out as a routine method and benefit fields of research such as biomedicine, forensics, ecology, nutrition, and palaeodiet reconstruction in archaeology.


American Journal of Physical Anthropology | 2008

Iron Age breastfeeding practices in Britain: Isotopic evidence from Wetwang Slack, East Yorkshire

Mandy Jay; Benjamin T. Fuller; Michael P. Richards; Christopher J. Knüsel; Sarah S. King

We present here the results of carbon and nitrogen isotopic analysis of bone collagen undertaken on all skeletal remains of infants and young children below the age of 6 years (n = 34) from the internationally important British cemetery site at Wetwang Slack in East Yorkshire (middle Iron Age, ca. 4th to 2nd centuries BC). The aim of the study is to investigate infant diet, with particular reference to breastfeeding and weaning practices, and to compare the data with previously published studies of archaeological populations, particularly in the context of the variation in data patterns to be seen between sites. The skeletal remains from Wetwang Slack form the only prehistoric collection in the UK, prior to the Romano-British period, with sufficient individuals in this age group to make such an isotopic study viable alongside associated adults and older children. The data are compared in detail with published data from two other sites, one from 19th century Canada and the other from Medieval Britain. The results suggest an unusual situation at Wetwang Slack, with neither the nitrogen nor the carbon isotope ratios conforming to expectations when compared with the putative mothers. We discuss how these data compare with the expectation for breastfed infants and we interpret the divergence in this case to be due to restricted breastfeeding and the early introduction of supplementary foods.


Antiquity | 2002

Bone stable isotope evidence for infant feeding in Mediaeval England.

Simon Mays; Michael P. Richards; Benjamin T. Fuller

This paper is a first study of duration of breastfeeding using bone stable isotopes in infants in a British palaeopopulation, from the deserted Mediaeval village of Wharram Percy, England. Nitrogen stable isotope analysis suggests cessation of breastfeeding between 1 and 2 years of age. Comparison with Mediaeval documentary sources suggests that recommendations of physicians regarding infant feeding may have influenced common practice in this period.


Journal of Analytical Atomic Spectrometry | 2012

Carbon and nitrogen stable isotope ratio analysis of freshwater, brackish and marine fish from Belgian archaeological sites (1st and 2nd millennium AD)

Benjamin T. Fuller; Gundula Müldner; Wim Van Neer; A. Ervynck; Michael P. Richards

Carbon and nitrogen stable isotope ratios were measured in 157 fish bone collagen samples from 15 different archaeological sites in Belgium which ranged in ages from the 3rd to the 18th c. AD. Due to diagenetic contamination of the burial environment, only 63 specimens produced results with suitable C : N ratios (2.9–3.6). The selected bones encompass a wide spectrum of freshwater, brackish, and marine taxa (N = 18), and this is reflected in the δ13C results (−28.2‰ to −12.9%). The freshwater fish have δ13C values that range from −28.2‰ to −20.2‰, while the marine fish cluster between −15.4‰ and −13.0‰. Eel, a catadromous species (mostly living in freshwater but migrating into the sea to spawn), plots between −24.1‰ and −17.7‰, and the anadromous fish (living in marine environments but migrating into freshwater to spawn) show a mix of freshwater and marine isotopic signatures. The δ15N results also have a large range (7.2‰ to 16.7‰) indicating that these fish were feeding at many different trophic levels in these diverse aquatic environments. The aim of this research is the isotopic characterization of archaeological fish species (ecology, trophic level, migration patterns) and to determine intra-species variation within and between fish populations differing in time and location. Due to the previous lack of archaeological fish isotope data from Northern Europe and Belgium in particular, these results serve as an important ecological backdrop for the future isotopic reconstruction of the diet of human populations dating from the historical period (1st and 2nd millennium AD), where there is zooarchaeological and historical evidence for an increased consumption of marine fish.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Exploring the contribution and significance of animal protein in the diet of bonobos by stable isotope ratio analysis of hair

Vicky M. Oelze; Benjamin T. Fuller; Michael P. Richards; Barbara Fruth; Martin Surbeck; Jean-Jacques Hublin; Gottfried Hohmann

In primates, age, sex, and social status can strongly influence access to food resources. In Pan, these criteria are assumed to influence access to vertebrate meat. However, the significance of meat in terms of its role in the nutrition of Pan is still debated. Here we present a study using stable carbon and nitrogen isotope ratios in hair samples from habituated, wild bonobos (Pan paniscus) to explore these issues. Over a period of 5 mo hair samples were collected from fresh bonobo nests at LuiKotale, Democratic Republic of Congo. Hair samples were assigned to known individuals and were of sufficient length to allow the evaluation of isotopic variation over several months. Samples of plant foods and sympatric fauna were also analyzed. The δ13C and δ15N results of the bonobo hair were remarkably homogeneous over time and for the group as a whole. There are no differences in diet between the sexes. Within the group of males, however, there was a positive correlation between dominance status and δ15N. The isotopic data indicate that the contribution of fauna to bonobo diet is marginal and that plant food is the dietary protein source. In only some cases did elevated δ15N hair values correlate with observed faunivory and not correspond to the δ15N measured in the dominant plant foods. Given the large variation in hunting and meat eating of Pan across the African continent, the detection of seasonal changes in faunivory by elevated δ15N values in sectioned ape hair is a promising approach.


American Journal of Physical Anthropology | 2012

Isotopic reconstruction of human diet and animal husbandry practices during the Classical-Hellenistic, imperial, and Byzantine periods at Sagalassos, Turkey

Benjamin T. Fuller; Bea De Cupere; Elena Marinova; Wim Van Neer; Marc Waelkens; Michael P. Richards

An isotopic reconstruction of human dietary patterns and livestock management practices (herding, grazing, foddering, etc.) is presented here from the sites of Düzen Tepe and Sagalassos in southwestern Turkey. Carbon and nitrogen stable isotope ratios were determined from bone collagen extracted from humans (n = 49) and animals (n = 454) from five distinct time periods: Classical-Hellenistic (400-200 BC), Early to Middle Imperial (25 BC-300 AD), Late Imperial (300-450 AD), Early Byzantine (450-600 AD), and Middle Byzantine (800-1200 AD). The humans had protein sources that were based on C(3) plants and terrestrial animals. During the Classical-Hellenistic period, all of the domestic animals had δ(13) C and δ(15) N signatures that clustered together; evidence that the animals were herded in the same area or kept in enclosures and fed on similar foods. The diachronic analysis of the isotopic trends in the dogs, cattle, pigs, sheep, and goats highlighted subtle but distinct variations in these animals. The δ(13) C values of the dogs and cattle increased (reflecting C(4) plant consumption) during the Imperial and Byzantine periods, but the pigs and the goats displayed little change and a constant C(3) plant-based diet. The sheep had a variable δ(13) C pattern reflecting periods of greater and lesser consumption of C(4) plants in the diet. In addition, the δ(15) N values of the dogs, pigs, cattle, and sheep increase substantially from the Classical-Hellenistic to the Imperial periods reflecting a possible increase in protein consumption, but the goats showed a decrease. Finally, these isotopic results are discussed in the context of zooarcheological, archeobotanical, and trace element evidence.


American Journal of Physical Anthropology | 2010

Investigation of diachronic dietary patterns on the islands of Ibiza and formentera, Spain: Evidence from carbon and nitrogen stable isotope ratio analysis

Benjamin T. Fuller; Nicholas Márquez-Grant; Michael P. Richards

To examine how dietary patterns may have changed in the western Mediterranean through time, stable carbon and nitrogen isotope ratios were measured on extracted bone collagen from fauna (n = 75) and humans (n = 135) spanning four distinct chronological periods: Chalcolithic (c.2100-1600 BC), Punic (6th-2nd/1st century BC), Late Antiquity-Early Byzantine (4th-7th century AD), and Islamic (c.10th-13th century AD) on the islands of Ibiza and Formentera, Spain. The Chalcolithic, Punic, and Late Antiquity-Byzantine societies all showed evidence of a predominately C(3) terrestrial-based diet with a possible input of a small amount of marine and/or C(4) dietary resources. In contrast, the Islamic population on Ibiza had a subsistence strategy that was reliant on a significant amount of C(4) plants and/or animals fed a C(4) diet, likely millet. These results indicate a fairly constant C(3) terrestrial-based diet on the islands of Ibiza and Formentera through time, with a shift to C(4) dietary resources during the Islamic Period. Further research is needed from other Islamic populations in and around the Mediterranean to better understand this unique dietary adaptation. Am J Phys Anthropol 143:512-522, 2010.

Collaboration


Dive into the Benjamin T. Fuller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wim Van Neer

Royal Museum for Central Africa

View shared research outputs
Top Co-Authors

Avatar

Tingting Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bea De Cupere

Royal Belgian Institute of Natural Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge