Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin U. Samuel is active.

Publication


Featured researches published by Benjamin U. Samuel.


The EMBO Journal | 2000

Vacuolar uptake of host components, and a role for cholesterol and sphingomyelin in malarial infection

Sabine A. Lauer; Jeffrey VanWye; Travis Harrison; Heather McManus; Benjamin U. Samuel; N. Luisa Hiller; Narla Mohandas; Kasturi Haldar

Erythrocytes, which are incapable of endocytosis or phagocytosis, can be infected by the malaria parasite Plasmodium falciparum. We find that a transmembrane protein (Duffy), glycosylphosphatidylinositol (GPI)‐anchored and cytoplasmic proteins, associated with detergent‐resistant membranes (DRMs) that are characteristic of microdomains in host cell membranes, are internalized by vacuolar parasites, while the major integral membrane and cytoskeletal proteins are not. The internalized host proteins and a plasmodial transmembrane resident parasitophorous vacuolar membrane (PVM) protein are detected in DRMs associated with vacuolar parasites. This is the first report of a host transmembrane protein being recruited into an apicomplexan vacuole and of the presence of vacuolar DRMs; it establishes that integral association does not preclude protein internalization into the P.falciparum vacuole. Rather, as shown for Duffy, intracellular accumulation occurs at the same rate as that seen for a DRM‐associated GPI‐anchored protein. Furthermore, novel mechanisms regulated by the DRM lipids, sphingomyelin and cholesterol, mediate (i) the uptake of host DRM proteins and (ii) maintenance of the intracellular vacuole in the non‐endocytic red cell, which may have implications for intracellular parasitism and pathogenesis.


International Journal for Parasitology | 2001

Triclosan inhibits the growth of Plasmodium falciparum and Toxoplasma gondii by inhibition of apicomplexan Fab I

Rima McLeod; Stephen P. Muench; John B. Rafferty; Dennis E. Kyle; Ernest Mui; Michael J. Kirisits; Douglas G. Mack; Craig W. Roberts; Benjamin U. Samuel; Russell E. Lyons; Mark Dorris; Wilbur K. Milhous; David W. Rice

Fab I, enoyl acyl carrier protein reductase (ENR), is an enzyme used in fatty acid synthesis. It is a single chain polypeptide in plants, bacteria, and mycobacteria, but is part of a complex polypeptide in animals and fungi. Certain other enzymes in fatty acid synthesis in apicomplexan parasites appear to have multiple forms, homologous to either a plastid, plant-like single chain enzyme or more like the animal complex polypeptide chain. We identified a plant-like Fab I in Plasmodium falciparum and modelled the structure on the Brassica napus and Escherichia coli structures, alone and complexed to triclosan (5-chloro-2-[2,4 dichlorophenoxy] phenol]), which confirmed all the requisite features of an ENR and its interactions with triclosan. Like the remarkable effect of triclosan on a wide variety of bacteria, this compound markedly inhibits growth and survival of the apicomplexan parasites P. falciparum and Toxoplasma gondii at low (i.e. IC50 congruent with150-2000 and 62 ng/ml, respectively) concentrations. Discovery and characterisation of an apicomplexan Fab I and discovery of triclosan as lead compound provide means to rationally design novel inhibitory compounds.


Cellular Microbiology | 2002

Protein and lipid trafficking induced in erythrocytes infected by malaria parasites.

Kasturi Haldar; Narla Mohandas; Benjamin U. Samuel; Travis Harrison; Natalia Luisa Hiller; Thomas Akompong; Paul Cheresh

The human malaria parasite Plasmodium falciparum develops in a parasitophorous vacuolar membrane (PVM) within the mature red cell and extensively modifies structural and antigenic properties of this host cell. Recent studies shed significant new, mechanistic perspective on the underlying processes. There is finally, definitive evidence that despite the absence of endocytosis, transmembrane proteins in the host red cell membrane are imported in to the PVM. These are not major erythrocyte proteins but components that reside in detergent resistant membrane (DRM) rafts in red cell membrane and are detected in rafts in the PVM. Disruption of either erythrocyte or vacuolar rafts is detrimental to infection suggesting that raft proteins and lipids are essential for the parasitization of the red cell. On secretory export of parasite proteins: an ER secretory signal (SS) sequence is required for protein secretion to the PV. Proteins carrying an additional plastid targeting sequence (PTS) are also detected in the PV but subsequently delivered to the plastid organelle within the parasite, suggesting that the PTS may have a second function as an endocytic sorting signal. A distinct but yet undefined peptidic motif underlies protein transport across the PVM to the red cell (although all of the published data does not yet fit this model). Further multiple exported proteins transit through secretory ‘cleft’ structures, suggesting that clefts may be sorting compartments assembled by the parasite in the red cell.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Delivery of antimicrobials into parasites

Benjamin U. Samuel; B. Hearn; Douglas G. Mack; Paul A. Wender; Jonathan B. Rothbard; Michael J. Kirisits; Ernie Mui; Sarah A. Wernimont; Craig W. Roberts; Stephen P. Muench; David W. Rice; Sean T. Prigge; A. B. Law; Rima McLeod

To eliminate apicomplexan parasites, inhibitory compounds must cross host cell, parasitophorous vacuole, and parasite membranes and cyst walls, making delivery challenging. Here, we show that short oligomers of arginine enter Toxoplasma gondii tachyzoites and encysted bradyzoites. Triclosan, which inhibits enoyl-ACP reductase (ENR), conjugated to arginine oligomers enters extracellular tachyzoites, host cells, tachyzoites inside parasitophorous vacuoles within host cells, extracellular bradyzoites, and bradyzoites within cysts. We identify, clone, and sequence T. gondii enr and produce and characterize enzymatically active, recombinant ENR. This enzyme has the requisite amino acids to bind triclosan. Triclosan released after conjugation to octaarginine via a readily hydrolyzable ester linkage inhibits ENR activity, tachyzoites in vitro, and tachyzoites in mice. Delivery of an inhibitor to a microorganism via conjugation to octaarginine provides an approach to transporting antimicrobials and other small molecules to sequestered parasites, a model system to characterize transport across multiple membrane barriers and structures, a widely applicable paradigm for treatment of active and encysted apicomplexan and other infections, and a generic proof of principle for a mechanism of medicine delivery.


International Journal for Parasitology | 2001

Transport mechanisms in Plasmodium-infected erythrocytes: lipid rafts and a tubovesicular network

Kasturi Haldar; Benjamin U. Samuel; Narla Mohandas; Travis Harrison; Natalia Luisa Hiller

The mature human erythrocyte is a simple cell that is devoid of intracellular organelles and does not show endocytic or phagocytic activity at the plasma membrane. However, following infection by Plasmodium, the erythrocyte undergoes several morphological and functional changes. Parasite-derived proteins are exported into the erythrocyte cytoplasm and to the membrane, while several proteins are localised to the parasitophorous vacuolar membrane and to the tubovesicular membranous network structures surrounding the parasite. Recent evidence indicates that multiple host proteins, independent of the type of their membrane anchor, that exist in detergent-resistant membrane (DRM) rafts or microdomains enter this apicomplexan vacuole. The internalised host components along with the parasite-encoded transmembrane protein PfEXP1 can be detected as DRM rafts in the vacuole. It appears that in Plasmodium-infected erythrocytes lipid rafts may play a role in endovacuolation and macromolecular transport.


Journal of Biological Chemistry | 2002

trans Expression of a Plasmodium falciparum Histidine-rich Protein II (HRPII) Reveals Sorting of Soluble Proteins in the Periphery of the Host Erythrocyte and Disrupts Transport to the Malarial Food Vacuole

Thomas Akompong; Madhusudan Kadekoppala; Travis Harrison; Anna Oksman; Daniel E. Goldberg; Hisashi Fujioka; Benjamin U. Samuel; David J. Sullivan; Kasturi Haldar

The heme polymer hemozoin is produced in the food vacuole (fv) of the parasite after hemoglobin proteolysis and is the target of the drug chloroquine. A candidate heme polymerase, the histidine-rich protein II (HRPII), is proposed to be delivered to the fv by ingestion of the infected-red cell cytoplasm. Here we show that 97% of endogenous Plasmodium falciparum (Pf) HRPII (PfHRPII) is secreted as soluble protein in the periphery of the red cell and avoids endocytosis by the parasite, and 3% remains membrane-bound within the parasite. Transfected cells release 90% of a soluble transgene PfHRPIImyc into the red cell periphery and contain 10% membrane bound within the parasite. Yet these cells show a minor reduction in hemozoin production and IC50 for chloroquine. They also show decreased transport of resident fv enzyme PfPlasmepsin I, the endoplasmic reticulum (ER) marker PfBiP, and parasite-associated HRPII to fvs. Instead, all three proteins accumulate in the ER, although there is no defect in protein export from the parasite. The data suggest that novel mechanisms of sorting (i) soluble antigens like HRPII in the red cell cytoplasm and (ii) fv-bound membrane complexes in the ER regulate parasite digestive processes.


Current Opinion in Hematology | 2001

Erythrocytic vacuolar rafts induced by malaria parasites.

Kasturi Haldar; Benjamin U. Samuel; Narla Mohandas; Travis Harrison; Natalia Luisa Hiller

Studies in the past year displaced long-standing dogmas and provided many new molecular insights into how proteins and solutes move between the erythrocyte plasma membrane and the malarial vacuole. Highlights include a demonstration that (1) detergent-resistant membrane (DRM) rafts exist in the red cell membrane and their resident proteins are detected as rafts in the plasmodial vacuole, (2) a voltage-gated channel in the infected red cell membrane mediates uptake of extracellular nutrient solutes, and (3) intraerythrocytic membranes transport a parasite-encoded adherence antigen to the red cell surface.


Journal of Biological Chemistry | 2001

The Role of Cholesterol and Glycosylphosphatidylinositol-anchored Proteins of Erythrocyte Rafts in Regulating Raft Protein Content and Malarial Infection*

Benjamin U. Samuel; Narla Mohandas; Travis Harrison; Heather McManus; Wendell Rosse; Marion E. Reid; Kasturi Haldar


Science | 2003

Erythrocyte G Protein-Coupled Receptor Signaling in Malarial Infection

Travis Harrison; Benjamin U. Samuel; Thomas Akompong; Heidi E. Hamm; Narla Mohandas; Jon W. Lomasney; Kasturi Haldar


Blood | 2004

Erythrocyte detergent-resistant membrane proteins: their characterization and selective uptake during malarial infection

Sean C. Murphy; Benjamin U. Samuel; Travis Harrison; Kaye D. Speicher; David W. Speicher; Marion E. Reid; Rainer Prohaska; Philip S. Low; Michael J. A. Tanner; Narla Mohandas; Kasturi Haldar

Collaboration


Dive into the Benjamin U. Samuel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kasturi Haldar

University of Notre Dame

View shared research outputs
Top Co-Authors

Avatar

Rima McLeod

Infectious Disease Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sean T. Prigge

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Dennis Kyle

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge