Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin Witschas is active.

Publication


Featured researches published by Benjamin Witschas.


Journal of Atmospheric and Oceanic Technology | 2009

The Airborne Demonstrator for the Direct-Detection Doppler Wind Lidar ALADIN on ADM-Aeolus. Part II: Simulations and Rayleigh Receiver Radiometric Performance

Ulrike Paffrath; Christian Lemmerz; Oliver Reitebuch; Benjamin Witschas; Ines Nikolaus; Volker Freudenthaler

Abstract In the frame of the Atmospheric Dynamics Mission Aeolus (ADM-Aeolus) satellite mission by the European Space Agency (ESA), a prototype of a direct-detection Doppler wind lidar was developed to measure wind from ground and aircraft at 355 nm. Wind is measured from aerosol backscatter signal with a Fizeau interferometer and from molecular backscatter signal with a Fabry–Perot interferometer. The aim of this study is to validate the satellite instrument before launch, improve the retrieval algorithms, and consolidate the expected performance. The detected backscatter signal intensities determine the instrument wind measurement performance among other factors, such as accuracy of the calibration and stability of the optical alignment. Results of measurements and simulations for a ground-based instrument are compared, analyzed, and discussed. The simulated atmospheric aerosol models were validated by use of an additional backscatter lidar. The measured Rayleigh backscatter signals of the wind lidar pr...


Applied Optics | 2010

Spontaneous Rayleigh-Brillouin scattering of ultraviolet light in nitrogen, dry air and moist air,

Benjamin Witschas; Maria Ofelia Vieitez; Eric-Jan van Duijn; Oliver Reitebuch; Willem van de Water; W.M.G. Ubachs

Atmospheric lidar techniques for the measurement of wind, temperature, and optical properties of aerosols rely on the exact knowledge of the spectral line shape of the scattered laser light on molecules. We report on spontaneous Rayleigh-Brillouin scattering measurements in the ultraviolet at a scattering angle of 90 degrees on N(2) and on dry and moist air. The measured line shapes are compared to the Tenti S6 model, which is shown to describe the scattering line shapes in air at atmospheric pressures with small but significant deviations. We demonstrate that the line profiles of N(2) and air under equal pressure and temperature conditions differ significantly, and that this difference can be described by the S6 model. Moreover, we show that even a high water vapor content in air up to a volume fraction of 3.6vol.% has no influence on the line shape of the scattered light. The results are of relevance for the future spaceborne lidars on ADM-Aeolus (Atmospheric Dynamics Mission) and EarthCARE (Earth Clouds, Aerosols, and Radiation Explorer).


Applied Optics | 2011

Analytical model for Rayleigh–Brillouin line shapes in air

Benjamin Witschas

Atmospheric lidar techniques for the measurement of wind, temperature, and optical properties of aerosols as well as nonintrusive measurement techniques for temperature, density, and bulk velocity in gas flows rely on the exact knowledge of the spectral line shape of the scattered laser light on molecules. A mathematically complex, numerical model (Tenti S6 model) is currently the best model for describing these spectra. In this paper an easy processable, alternative analytical model for describing spontaneous Rayleigh-Brillouin spectra in air at atmospheric conditions is introduced. The deviations between the analytical and Tenti S6 models are shown to be smaller than 0.85%.


Optics Letters | 2014

Daytime measurements of atmospheric temperature profiles (2-15 km) by lidar utilizing Rayleigh-Brillouin scattering

Benjamin Witschas; Christian Lemmerz; Oliver Reitebuch

In this Letter, we report on a novel method for measuring atmospheric temperature profiles by lidar during daytime for heights of 2-15.3 km, with a vertical resolution of 0.3-2.2 km, using Rayleigh-Brillouin scattering. The measurements are performed by scanning a laser (λ=355 nm) over a 12 GHz range and using a Fabry-Pérot interferometer as discriminator. The temperature is derived by using a new analytical line shape model assuming standard atmospheric pressure conditions. Two exemplary temperature profiles resulting from measurements over 14 and 27 min are shown. A comparison with radiosonde temperature measurements shows reasonable agreement. In cloud-free conditions, the temperature difference reaches up to 5 K within the boundary layer, and is smaller than 2.5 K above. The statistical error of the derived temperatures is between 0.15 and 1.5 K.


Journal of Geophysical Research | 2017

Does Strong Tropospheric Forcing Cause Large‐Amplitude Mesospheric Gravity Waves? A DEEPWAVE Case Study

Martina Bramberger; Andreas Dörnbrack; Katrina Bossert; Benedikt Ehard; David C. Fritts; Bernd Kaifler; Christian Mallaun; Andrew Orr; P.-Dominique Pautet; Markus Rapp; Michael J. Taylor; S. B. Vosper; B. P. Williams; Benjamin Witschas

The DEEPWAVE (deep-propagating wave experiment) campaign was designed for an airborne and ground-based exploration of gravity waves from their tropospheric sources up to their dissipation at high altitudes. It was performed in and around New Zealand from 24 May till 27 July 2014, being the first comprehensive field campaign of this kind. A variety of airborne instruments was deployed onboard the research aircraft NSF/NCAR Gulfstream V (GV) and the DLR Falcon. Additionally, ground-based measurements were conducted at different sites across the southern island of New Zealand, including the DLR Rayleigh lidar located at Lauder (45.04 S, 169.68 E). We focus on the intensive observing period (IOP) 10 on the 4 July 2014, when strong WSW winds of about 40 m/s at 700 hPa provided intense forcing conditions for mountain waves. At tropopause level, the horizontal wind exceeded 50 m/s and favored the vertical propagation of gravity waves into the stratosphere. The DLR Rayleigh Lidar measured temperature fluctuations with peak-to-peak amplitudes of about 20 K in the mesosphere (60 km to 80 km MSL) over a period of more than 10 hours. Two research flights were conducted by the DLR Falcon (Falcon Flight 04 and 05) during this period with straight transects (Mt. Aspiring 2a) over New Zealand´s Alps at three different flight-levels around the tropopause (approx. 11 km MSL). These research flights were coordinated with the GV (Research Flight 16) where the largest mountain wave amplitudes at flight-level (approx. 13 km MSL) were measured during DEEPWAVE. Additionally a first analysis of Falcons in-situ flight-level data revealed amplitudes in the vertical wind larger than 4 m/s at all altitudes in the vicinity of the highest peaks of the Southern Alps. Here, we present a comprehensive picture of the gravity wave characteristics and propagation properties during this interesting gravity wave event. We use the airborne observations combined with a comprehensive set of ground-based measurements consisting of 13 radiosoundings (1.5 hourly interval) together with the DLR Rayleigh lidar. To cover the altitude range from the troposphere to the mesosphere, high-resolution (1 hourly) ECMWF analyses and forecasts are used to estimate the propagation conditions of the excited mountain waves. The goal of our investigation is to find out whether the large amplitude mesospheric gravity waves are caused by the strong tropospheric forcing.


Applied Optics | 2012

Horizontal lidar measurements for the proof of spontaneous Rayleigh-Brillouin scattering in the atmosphere

Benjamin Witschas; Christian Lemmerz; Oliver Reitebuch

Several atmospheric lidar techniques rely on the exact knowledge of the spectral line shape of molecular scattered light in air, which, however, has not been accurately measured in real atmosphere up to now. In this paper we report on the investigation of spontaneous Rayleigh-Brillouin scattering within the atmosphere, utilizing horizontal lidar measurements (λ=355 nm, θ=180°) performed from the mountain observatory Schneefernerhaus (2650 m), located below Germanys highest mountain, the Zugspitze. These lidar measurements give proof of the effect of Brillouin scattering within the atmosphere for the first time to our knowledge. The measurements confirm that the Tenti S6 model can be used to adequately describe spontaneous Rayleigh-Brillouin spectra of light scattered in air under real atmospheric conditions. The presented results are of relevance for spectrally resolving lidars like those deployed on the Atmospheric Dynamics Mission Aeolus (ADM-Aeolus) andthe Earth Clouds, Aerosols, and Radiation Explorer Mission (EarthCARE).


Applied Optics | 2013

Rayleigh–Brillouin scattering profiles of air at different temperatures and pressures

Ziyu Gu; Benjamin Witschas; Willem van de Water; W.M.G. Ubachs

Rayleigh-Brillouin (RB) scattering profiles for air have been recorded for the temperature range from 255 to 340 K and the pressure range from 640 to 3300 mbar, covering the conditions relevant for the Earths atmosphere and for planned atmospheric light detection and ranging (LIDAR) missions. The measurements performed at a wavelength of λ=366.8 nm detect spontaneous RB scattering at a 90° scattering angle from a sensitive intracavity setup, delivering scattering profiles at a 1% rms noise level or better. The experimental results have been compared to a kinetic line-shape model, the acclaimed Tenti S6 model, considered to be most appropriate for such conditions, under the assumption that air can be treated as an effective single-component gas with temperature-scaled values for the relevant macroscopic transport coefficients. The elusive transport coefficient, the bulk viscosity η(b), is effectively derived by a comparing the measurements to the model, yielding an increased trend from 1.0 to 2.5×10(-5) kg·m(-1)·s(-1) for the temperature interval. The calculated (Tenti S6) line shapes are consistent with experimental data at the level of 2%, meeting the requirements for the future RB-scattering LIDAR missions in the Earths atmosphere. However, the systematic 2% deviation may imply that the model has a limit to describe the finest details of RB scattering in air. Finally, it is demonstrated that the RB scattering data in combination with the Tenti S6 model can be used to retrieve the actual gas temperatures.


Journal of Atmospheric and Oceanic Technology | 2017

Airborne Wind Lidar Measurements of Vertical and Horizontal Winds for the Investigation of Orographically Induced Gravity Waves

Benjamin Witschas; Stephan Rahm; Andreas Dörnbrack; Johannes Wagner; Markus Rapp

AbstractAirborne coherent Doppler wind lidar measurements, acquired during the Gravity Wave Life-Cycle (GW-LCYCLE) I field campaign performed from 2 to 14 December 2013 in Kiruna, Sweden, are used to investigate internal gravity waves (GWs) induced by flow across the Scandinavian Mountains. Vertical wind speed is derived from lidar measurements with a mean bias of less than 0.05 m s−1 and a standard deviation of 0.2 m s−1 by correcting horizontal wind projections onto the line-of-sight direction by means of ECMWF wind data. The horizontal wind speed and direction are retrieved from lidar measurements by applying a velocity–azimuth display scan and a spectral accumulation technique, leading to a horizontal resolution of about 9 km along the flight track and a vertical resolution of 100 m, respectively. Both vertical and horizontal wind measurements are valuable for characterizing GW properties as demonstrated by means of a flight performed on 13 December 2013 acquired during weather conditions favorable fo...


Optics Express | 2014

Temperature retrieval from Rayleigh-Brillouin scattering profiles measured in air

Benjamin Witschas; Ziyu Gu; W.M.G. Ubachs

In order to investigate the performance of two different algorithms for retrieving temperature from Rayleigh-Brillouin (RB) line shapes, RB scattering measurements have been performed in air at a wavelength of 403 nm, for a temperature range from 257 K to 330 K, and atmospherically relevant pressures from 871 hPa to 1013 hPa. One algorithm, based on the Tenti S6 line shape model, shows very good accordance with the reference temperature. In particular, the absolute difference is always less than 2 K. A linear correlation yields a slope of 1.01 ± 0.02 and thus clearly demonstrates the reliability of the retrieval procedure. The second algorithm, based on an analytical line shape model, shows larger discrepancies of up to 9.9 K and is thus not useful at its present stage. The possible reasons for these discrepancies and improvements of the analytical model are discussed. The obtained outcomes are additionally verified with previously performed RB measurements in air, at 366 nm, temperatures from 255 K to 338 K and pressures from 643 hPa to 826 hPa [Appl. Opt. 52, 4640 (2013)]. The presented results are of relevance for future lidar studies that might utilize RB scattering for retrieving atmospheric temperature profiles with high accuracy.


Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing VII | 2011

Airborne direct-detection and coherent wind lidar measurements along the east coast of Greenland in 2009 supporting ESA's Aeolus mission

Uwe Marksteiner; Oliver Reitebuch; Stephan Rahm; Ines Nikolaus; Christian Lemmerz; Benjamin Witschas

The Aeolus mission of the European Space Agency (ESA) will send the first wind lidar to space to fulfill the utmost need for global wind profile observations. Before the scheduled launch in late 2013, pre-launch campaigns have to be performed to validate the measurement principle and to optimize retrieval algorithms. Therefore, an airborne prototype instrument has been developed, the ALADIN Airborne Demonstrator (A2D). In September 2009 an airborne campaign over Greenland, Iceland and the Atlantic Ocean was conducted using two instruments: the A2D and a well established coherent 2-μm lidar for aerosol and cloud backscatter. Thus, two wind lidar instruments measuring Mie and Rayleigh backscatter in parallel were operated on the same aircraft. This paper describes the analysis of wind measurement data gathered during a flight segment on 26.09.2009. A dedicated aerial interpolation algorithm is introduced taking into account the different resolution grids of the two lidar systems. Via a statistical comparison of line of sight (LOS) winds the systematic and random error of the direct-detection wind lidar A2D was assessed, yielding -0.7 m/s and 1.9 m/s for the Rayleigh and 1.1 m/s and 1.3 m/s for the Mie channel, respectively.

Collaboration


Dive into the Benjamin Witschas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephan Rahm

German Aerospace Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oliver Lux

German Aerospace Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Markus Rapp

German Aerospace Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge