Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin Y. Winer is active.

Publication


Featured researches published by Benjamin Y. Winer.


Science Translational Medicine | 2014

Broadly neutralizing antibodies abrogate established hepatitis C virus infection

Ype P. de Jong; Marcus Dorner; Michiel C. Mommersteeg; Jing W. Xiao; Alejandro B. Balazs; Justin B. Robbins; Benjamin Y. Winer; Sherif Gerges; Kevin Vega; Rachael N. Labitt; Bridget M. Donovan; Erick Giang; Anuradha Krishnan; Luis Chiriboga; Michael R. Charlton; Dennis R. Burton; David Baltimore; Mansun Law; Charles M. Rice; Alexander Ploss

HCV-specific neutralizing antibodies protect humanized mice from challenge and suppress established infections. Neutralizing Antibodies Take Down the HCV Establishment In most individuals infected with hepatitis C virus (HCV), the HCV sets up shop—establishing a long-term, chronic infection that damages the liver and can lead to cirrhosis or liver cancer. de Jong et al. now report that a trio of neutralizing antibodies not only can prevent infection but also can treat and maybe even cure already established infection in multiple animal models. The broadly neutralizing antibodies, which could block multiple genotypes of HCV, were delivered into the muscle by a virus—an adeno-associated vector that does not cause disease—resulting in prolonged expression of the antibodies. If these data hold true in people, this approach may provide a new tool for treating HCV infection. In most exposed individuals, hepatitis C virus (HCV) establishes a chronic infection; this long-term infection in turn contributes to the development of liver diseases such as cirrhosis and hepatocellular carcinoma. The role of antibodies directed against HCV in disease progression is poorly understood. Neutralizing antibodies (nAbs) can prevent HCV infection in vitro and in animal models. However, the effects of nAbs on an established HCV infection are unclear. We demonstrate that three broadly nAbs—AR3A, AR3B, and AR4A—delivered with adeno-associated viral vectors can confer protection against viral challenge in humanized mice. Furthermore, we provide evidence that nAbs can abrogate an ongoing HCV infection in primary hepatocyte cultures and in a human liver chimeric mouse model. These results showcase a therapeutic approach to interfere with HCV infection by exploiting a previously unappreciated need for HCV to continuously infect new hepatocytes to sustain a chronic infection.


Antimicrobial Agents and Chemotherapy | 2015

Novel Phage Lysin Capable of Killing the Multidrug-Resistant Gram-Negative Bacterium Acinetobacter baumannii in a Mouse Bacteremia Model

Rolf Lood; Benjamin Y. Winer; Adam J. Pelzek; Roberto Díez-Martínez; Mya Thandar; Chad W. Euler; Raymond Schuch; Vincent A. Fischetti

ABSTRACT Acinetobacter baumannii, a Gram-negative multidrug-resistant (MDR) bacterium, is now recognized as one of the more common nosocomial pathogens. Because most clinical isolates are found to be multidrug resistant, alternative therapies need to be developed to control this pathogen. We constructed a bacteriophage genomic library based on prophages induced from 13 A. baumannii strains and screened it for genes encoding bacteriolytic activity. Using this approach, we identified 21 distinct lysins with different activities and sequence diversity that were capable of killing A. baumannii. The lysin (PlyF307) displaying the greatest activity was further characterized and was shown to efficiently kill (>5-log-unit decrease) all tested A. baumannii clinical isolates. Treatment with PlyF307 was able to significantly reduce planktonic and biofilm A. baumannii both in vitro and in vivo. Finally, PlyF307 rescued mice from lethal A. baumannii bacteremia and as such represents the first highly active therapeutic lysin specific for Gram-negative organisms in an array of native lysins found in Acinetobacter phage.


Antimicrobial Agents and Chemotherapy | 2016

Novel Engineered Peptides of a Phage Lysin as Effective Antimicrobials against Multidrug-Resistant Acinetobacter baumannii

Mya Thandar; Rolf Lood; Benjamin Y. Winer; Douglas R. Deutsch; Chad W. Euler; Vincent A. Fischetti

ABSTRACT Acinetobacter baumannii is a Gram-negative bacterial pathogen responsible for a range of nosocomial infections. The recent rise and spread of multidrug-resistant A. baumannii clones has fueled a search for alternative therapies, including bacteriophage endolysins with potent antibacterial activities. A common feature of these lysins is the presence of a highly positively charged C-terminal domain with a likely role in promoting outer membrane penetration. In the present study, we show that the C-terminal amino acids 108 to 138 of phage lysin PlyF307, named P307, alone were sufficient to kill A. baumannii (>3 logs). Furthermore, P307 could be engineered for improved activity, the most active derivative being P307SQ-8C (>5-log kill). Both P307 and P307SQ-8C showed high in vitro activity against A. baumannii in biofilms. Moreover, P307SQ-8C exhibited MICs comparable to those of levofloxacin and ceftazidime and acted synergistically with polymyxin B. Although the peptides were shown to kill by disrupting the bacterial cytoplasmic membrane, they did not lyse human red blood cells or B cells; however, serum was found to be inhibitory to lytic activity. In a murine model of A. baumannii skin infection, P307SQ-8C reduced the bacterial burden by ∼2 logs in 2 h. This study demonstrates the prospect of using peptide derivatives from bacteriophage lysins to treat topical infections and remove biofilms caused by Gram-negative pathogens.


PLOS ONE | 2013

Use of a Bacteriophage Lysin to Identify a Novel Target for Antimicrobial Development

Raymond Schuch; Adam J. Pelzek; Assaf Raz; Chad W. Euler; Patricia A. Ryan; Benjamin Y. Winer; Andrew Farnsworth; Shyam S. Bhaskaran; C. Erec Stebbins; Yong Xu; Adrienne Clifford; David J. Bearss; Hariprasad Vankayalapati; Allan R. Goldberg; Vincent A. Fischetti

We identified an essential cell wall biosynthetic enzyme in Bacillus anthracis and an inhibitor thereof to which the organism did not spontaneously evolve measurable resistance. This work is based on the exquisite binding specificity of bacteriophage-encoded cell wall-hydrolytic lysins, which have evolved to recognize critical receptors within the bacterial cell wall. Focusing on the B. anthracis-specific PlyG lysin, we first identified its unique cell wall receptor and cognate biosynthetic pathway. Within this pathway, one biosynthetic enzyme, 2-epimerase, was required for both PlyG receptor expression and bacterial growth. The 2-epimerase was used to design a small-molecule inhibitor, epimerox. Epimerox prevented growth of several Gram-positive pathogens and rescued mice challenged with lethal doses of B. anthracis. Importantly, resistance to epimerox was not detected (<10−11 frequency) in B. anthracis and S. aureus. These results describe the use of phage lysins to identify promising lead molecules with reduced resistance potential for antimicrobial development.


Journal of Biological Chemistry | 2013

Anthrax SET Protein A POTENTIAL VIRULENCE DETERMINANT THAT EPIGENETICALLY REPRESSES NF-κB ACTIVATION IN INFECTED MACROPHAGES

Benjamin Y. Winer; Anbalagan Jaganathan; Jigneshkumar Patel; Miriam Sgobba; Raymond Schuch; Yogesh K. Gupta; Shozeb Haider; Rong Wang; Vincent A. Fischetti

Background: The role of SET protein (BaSET) in B. anthracis life cycle was unknown until now. Results: BaSET regulates NF-κB activation, septation, and infectivity. Conclusion: BaSET is one of the key effectors for B. anthracis pathogenesis. Significance: Previous studies predict that SET protein may not have any role in lower organisms. Hence, this is the first report demonstrating SET protein function in a human pathogen. Toxins play a major role in the pathogenesis of Bacillus anthracis by subverting the host defenses. However, besides toxins, B. anthracis expresses effector proteins, whose role in pathogenesis are yet to be investigated. Here we present that suppressor-of-variegation, enhancer-of-zeste, trithorax protein from B. anthracis (BaSET) methylates human histone H1, resulting in repression of NF-κB functions. Notably, BaSET is secreted and undergoes nuclear translocation to enhance H1 methylation in B. anthracis-infected macrophages. Compared with wild type Sterne, delayed growth kinetics and altered septum formation were observed in the BaSET knock-out (BaΔSET) bacilli. Uncontrolled BaSET expression during complementation of the BaSET gene in BaΔSET partially restored growth during stationary phase but resulted in substantially shorter bacilli throughout the growth cycle. Importantly, in contrast to Sterne, the BaΔSET B. anthracis is avirulent in a lethal murine bacteremia model of infection. Collectively, BaSET is required for repression of host transcription as well as proper B. anthracis growth, making it a potentially unique virulence determinant.


Journal of Biological Inorganic Chemistry | 2011

Chemical reactivity of Synechococcus sp. PCC 7002 and Synechocystis sp. PCC 6803 hemoglobins: covalent heme attachment and bishistidine coordination

Henry J. Nothnagel; Matthew R. Preimesberger; Matthew P. Pond; Benjamin Y. Winer; Emily M. Adney; Juliette T. J. Lecomte

In the absence of an exogenous ligand, the hemoglobins from the cyanobacteria Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002 coordinate the heme group with two axial histidines (His46 and His70). These globins also form a covalent linkage between the heme 2-vinyl substituent and His117. The in vitro mechanism of heme attachment to His117 was examined with a combination of site-directed mutagenesis, NMR spectroscopy, and optical spectroscopy. The results supported an electrophilic addition with vinyl protonation being the rate-determining step. Replacement of His117 with a cysteine demonstrated that the reaction could occur with an alternative nucleophile. His46 (distal histidine) was implicated in the specificity of the reaction for the 2-vinyl group as well as protection of the protein from oxidative damage caused by exposure to exogenous H2O2.


PLOS ONE | 2014

Beyond the Chromosome: The Prevalence of Unique Extra-Chromosomal Bacteriophages with Integrated Virulence Genes in Pathogenic Staphylococcus aureus

Bryan Utter; Douglas R. Deutsch; Raymond Schuch; Benjamin Y. Winer; Kathleen Verratti; Kim Bishop-Lilly; Shanmuga Sozhamannan; Vincent A. Fischetti

In Staphylococcus aureus, the disease impact of chromosomally integrated prophages on virulence is well described. However, the existence of extra-chromosomal prophages, both plasmidial and episomal, remains obscure. Despite the recent explosion in bacterial and bacteriophage genomic sequencing, studies have failed to specifically focus on extra-chromosomal elements. We selectively enriched and sequenced extra-chromosomal DNA from S. aureus isolates using Roche-454 technology and uncovered evidence for the widespread distribution of multiple extra-chromosomal prophages (ExPΦs) throughout both antibiotic-sensitive and -resistant strains. We completely sequenced one such element comprised of a 43.8 kbp, circular ExPΦ (designated ФBU01) from a vancomycin-intermediate S. aureus (VISA) strain. Assembly and annotation of ФBU01 revealed a number of putative virulence determinants encoded within a bacteriophage immune evasion cluster (IEC). Our identification of several potential ExPΦs and mobile genetic elements (MGEs) also revealed numerous putative virulence factors and antibiotic resistance genes. We describe here a previously unidentified level of genetic diversity of stealth extra-chromosomal elements in S. aureus, including phages with a larger presence outside the chromosome that likely play a prominent role in pathogenesis and strain diversity driven by horizontal gene transfer (HGT).


FEBS Letters | 2016

In vivo models of hepatitis B and C virus infection.

Benjamin Y. Winer; Qiang Ding; Jenna M. Gaska; Alexander Ploss

Globally, more than 500 million individuals are chronically infected with hepatitis B (HBV), delta (HDV), and/or C (HCV) viruses, which can result in severe liver disease. Mechanistic studies of viral persistence and pathogenesis have been hampered by the scarcity of animal models. The limited species and cellular host range of HBV, HDV, and HCV, which robustly infect only humans and chimpanzees, have posed challenges for creating such animal models. In this review, we will discuss the barriers to interspecies transmission and the progress that has been made in our understanding of the HBV, HDV, and HCV life cycles. Additionally, we will highlight a variety of approaches that overcome these barriers and thus facilitate in vivo studies of these hepatotropic viruses.


Current Opinion in Virology | 2015

Determinants of hepatitis B and delta virus host tropism

Benjamin Y. Winer; Alexander Ploss

Hepatitis B virus (HBV) infections are a global health problem afflicting approximately 360 million patients. Of these individuals, 15-20 million are co-infected with hepatitis delta virus (HDV). Progress toward curative therapies has been impeded by the highly restricted host tropism of HBV, which is limited to productive infections in humans and chimpanzees. Here, we will discuss different approaches that have been taken to study HBV and HDV infections in vivo. The development of transgenic and humanized mice has lead to deeper insights into HBV pathogenesis. An improved understanding of the determinants governing HBV and HDV species tropism will aid in the construction of a small animal model with inheritable susceptible to HBV/HDV.


Nature Communications | 2017

Long-term hepatitis B infection in a scalable hepatic co-culture system

Benjamin Y. Winer; Tiffany Huang; Eitan Pludwinski; Brigitte Heller; Felix Wojcik; Gabriel Lipkowitz; Amit Parekh; Cheul H. Cho; Anil Shrirao; Tom W. Muir; Eric Novik; Alexander Ploss

Hepatitis B virus causes chronic infections in 250 million people worldwide. Chronic hepatitis B virus carriers are at risk of developing fibrosis, cirrhosis, and hepatocellular carcinoma. A prophylactic vaccine exists and currently available antivirals can suppress but rarely cure chronic infections. The study of hepatitis B virus and development of curative antivirals are hampered by a scarcity of models that mimic infection in a physiologically relevant, cellular context. Here, we show that cell-culture and patient-derived hepatitis B virus can establish persistent infection for over 30 days in a self-assembling, primary hepatocyte co-culture system. Importantly, infection can be established without antiviral immune suppression, and susceptibility is not donor dependent. The platform is scalable to microwell formats, and we provide proof-of-concept for its use in testing entry inhibitors and antiviral compounds.The lack of models that mimic hepatitis B virus (HBV) infection in a physiologically relevant context has hampered drug development. Here, Winer et al. establish a self-assembling, primary hepatocyte co-culture system that can be infected with patient-derived HBV without further modifications.

Collaboration


Dive into the Benjamin Y. Winer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amit Parekh

New Jersey Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge