Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benoit Bideau is active.

Publication


Featured researches published by Benoit Bideau.


Human Movement Science | 2010

Balancing Deceit and Disguise: How to successfully fool the defender in a 1 vs. 1 situation in rugby

Sébastien Brault; Benoit Bideau; Cathy Craig; Richard Kulpa

Suddenly changing direction requires a whole body reorientation strategy. In sporting duels such as an attacker vs. a defender in rugby, successful body orientation/reorientation strategies are essential for successful performance. The aim of this study is to examine which biomechanical factors, while taking into account biomechanical constraints, are used by an attacker in a 1 vs. 1 duel in rugby. More specifically we wanted to examine how an attacker tries to deceive the defender yet disguise his intentions by comparing effective deceptive movements (DM(+)), ineffective deceptive movements (DM(-)), and non-deceptive movements (NDM). Eight French amateur expert rugby union players were asked to perform DMs and NDMs in a real 1 vs. 1 duel. For each type of movement (DM(+), DM(-), NDM) different relevant orientation/reorientation parameters, medio-lateral displacement of the center of mass (COM), foot, head, upper trunk, and lower trunk yaw; and upper trunk roll were analyzed and compared. Results showed that COM displacement and lower trunk yaw were minimized during DMs while foot displacement along with head and upper trunk yaw were exaggerated during DMs (DM(+) and DM(-)). This would suggest that the player is using exaggerated body-related information to consciously deceive the defender into thinking he will run in a given direction while minimizing other postural control parameters to disguise a sudden change in posture necessary to modify final running direction. Further analysis of the efficacy of deceptive movements showed how the disguise and deceit strategies needed to be carefully balanced to successfully fool the defender.


PLOS ONE | 2012

Detecting deception in movement: the case of the side-step in rugby

Sébastien Brault; Benoit Bideau; Richard Kulpa; Cathy Craig

Although coordinated patterns of body movement can be used to communicate action intention, they can also be used to deceive. Often known as deceptive movements, these unpredictable patterns of body movement can give a competitive advantage to an attacker when trying to outwit a defender. In this particular study, we immersed novice and expert rugby players in an interactive virtual rugby environment to understand how the dynamics of deceptive body movement influence a defending player’s decisions about how and when to act. When asked to judge final running direction, expert players who were found to tune into prospective tau-based information specified in the dynamics of ‘honest’ movement signals (Centre of Mass), performed significantly better than novices who tuned into the dynamics of ‘deceptive’ movement signals (upper trunk yaw and out-foot placement) (p<.001). These findings were further corroborated in a second experiment where players were able to move as if to intercept or ‘tackle’ the virtual attacker. An analysis of action responses showed that experts waited significantly longer before initiating movement (p<.001). By waiting longer and picking up more information that would inform about future running direction these experts made significantly fewer errors (p<.05). In this paper we not only present a mathematical model that describes how deception in body-based movement is detected, but we also show how perceptual expertise is manifested in action expertise. We conclude that being able to tune into the ‘honest’ information specifying true running action intention gives a strong competitive advantage.


Sports Biomechanics | 2013

Professional tennis players' serve: correlation between segmental angular momentums and ball velocity

Caroline Martin; Richard Kulpa; Paul Delamarche; Benoit Bideau

The purpose of the study was to identify the relationships between segmental angular momentum and ball velocity between the following events: ball toss, maximal elbow flexion (MEF), racket lowest point (RLP), maximal shoulder external rotation (MER), and ball impact (BI). Ten tennis players performed serves recorded with a real-time motion capture. Mean angular momentums of the trunk, upper arm, forearm, and the hand-racket were calculated. The anteroposterior axis angular momentum of the trunk was significantly related with ball velocity during the MEF–RLP, RLP–MER, and MER–BI phases. The strongest relationships between the transverse-axis angular momentums and ball velocity followed a proximal-to-distal timing sequence that allows the transfer of angular momentum from the trunk (MEF–RLP and RLP–MER phases) to the upper arm (RLP–MER phase), forearm (RLP–MER and MER–BI phases), and the hand-racket (MER–BI phase). Since sequence is crucial for ball velocity, players should increase angular momentums of the trunk during MEF–MER, upper arm during RLP–MER, forearm during RLP–BI, and the hand-racket during MER–BI.


Human Movement Science | 2009

A kinematic and dynamic comparison of surface and underwater displacement in high level monofin swimming.

Guillaume Nicolas; Benoit Bideau

Fin swimming performance can be divided into underwater and surface water races. World records are about 10% faster for underwater swimming vs. surface swimming, but little is known about the advantage of underwater swimming for monofin swimming. Some authors reported that the air-water interface influences the kinematics and leads to a narrow vertical amplitude of the fin. On the one hand, surface swimming is expected to affect drag parameters (cross-sectional area (S) and active drag (AD)) when compared to underwater swimming. On the other hand, the surface swimming technique may also affect efficiency (eta(F)). The aim of this study is therefore to evaluate and compare drag parameters and efficiency during underwater and surface swimming. To this end, 12 international level monofin swimmers were measured during both underwater and surface swimming. Kinematic parameters (both dimensional and non-dimensional), eta(F) (calculated according to the Elongated-Body Theory), and AD (computed with Velocity Perturbation Method) were calculated for an underwater and a surface fin swimming trial, performed at maximal speed. As expected, results showed significantly lower velocities during surface swimming vs. underwater V(1,under) =2.5ms(-1) vs. V(1,surf) =2.36ms(-1), p<.01). Velocities during underwater and surface swimming were strongly correlated (r=.97, p<.01). Underwater swimming was also associated with higher vertical amplitudes of the fin compared to surface swimming (V(under) =0.55mvs. V(surf) )=0.46m, p<.01). Length-specific amplitudes (A(under)/L(b)) were in the order of 20% during underwater swimming as for undulating fish, and significantly higher than during surface swimming (A(surf)/L(b)=17%, p<.01). Efficiency for surface swimming was about 6% lower than for underwater swimming (eta(F,under) =0.79 vs. eta(F,surf) =0.74, p<.01). This decrease could be associated with an increase in swimming frequency for surface swimming (f (surf)=2.15Hz vs. f (under)=2.08Hz, p<.01). Active drag during surface swimming was about 7% higher than for underwater swimming (AD(under) =78.9N vs. AD(surf) =84.7N, p<.01). A significantly smaller cross-sectional area for surface swimming (S(under) =0.053m(2) vs. S(surf) =0.044m(2), p<.01) and higher drag coefficient for surface swimming (C(d,under) =0.47 vs. C(d,surf) =0.69, p<.01) were measured. Finally, correlation between cross-sectional area and vertical amplitude of the fin was reported for both underwater and surface swimming. These results suggest that the performance improvement during underwater swimming is not only linked to a wave drag reduction effect but also to a specific swimming technique due to the free surface.


American Journal of Sports Medicine | 2014

Energy Flow Analysis During the Tennis Serve Comparison Between Injured and Noninjured Tennis Players

Caroline Martin; Benoit Bideau; Nicolas Bideau; Guillaume Nicolas; Paul Delamarche; Richard Kulpa

Background: Energy flow has been hypothesized to be one of the most critical biomechanical concepts related to tennis performance and overuse injuries. However, the relationships among energy flow during the tennis serve, ball velocity, and overuse injuries have not been assessed. Purpose: To investigate the relationships among the quality and magnitude of energy flow, the ball velocity, and the peaks of upper limb joint kinetics and to compare the energy flow during the serve between injured and noninjured tennis players. Study Design: Case-control study; Level of evidence, 3. Methods: The serves of expert tennis players were recorded with an optoelectronic motion capture system. The forces and torques of the upper limb joints were calculated from the motion captures by use of inverse dynamics. The amount of mechanical energy generated, absorbed, and transferred was determined by use of a joint power analysis. Then the players were followed during 2 seasons to identify upper limb overuse injuries with a questionnaire. Finally, players were classified into 2 groups according to the questionnaire results: injured or noninjured. Results: Ball velocity increased and upper limb joint kinetics decreased with the quality of energy flow from the trunk to the hand + racket segment. Injured players showed a lower quality of energy flow through the upper limb kinetic chain, a lower ball velocity, and higher rates of energy absorbed by the shoulder and elbow compared with noninjured players. Conclusion: The findings of this study imply that improper energy flow during the tennis serve can decrease ball velocity, increase upper limb joint kinetics, and thus increase overuse injuries of the upper limb joints.


Scandinavian Journal of Medicine & Science in Sports | 2014

Upper limb joint kinetic analysis during tennis serve: Assessment of competitive level on efficiency and injury risks

Caroline Martin; Benoit Bideau; Mickaël Ropars; Paul Delamarche; Richard Kulpa

The aim of this work was to compare the joint kinetics and stroke production efficiency for the shoulder, elbow, and wrist during the serve between professionals and advanced tennis players and to discuss their potential relationship with given overuse injuries. Eleven professional and seven advanced tennis players were studied with an optoelectronic motion analysis system while performing serves. Normalized peak kinetic values of the shoulder, elbow, and wrist joints were calculated using inverse dynamics. To measure serve efficiency, all normalized peak kinetic values were divided by ball velocity. t‐tests were used to determine significant differences between the resultant joint kinetics and efficiency values in both groups (advanced vs professional). Shoulder inferior force, shoulder anterior force, shoulder horizontal abduction torque, and elbow medial force were significantly higher in advanced players. Professional players were more efficient than advanced players, as they maximize ball velocity with lower joint kinetics. Since advanced players are subjected to higher joint kinetics, the results suggest that they appeared more susceptible to high risk of shoulder and elbow injuries than professionals, especially during the cocking and deceleration phases of the serve.


Journal of Sports Sciences | 2012

How does the tennis serve technique influence the serve-and-volley?

Caroline Martin; Benoit Bideau; Guillaume Nicolas; Paul Delamarche; Richard Kulpa

Abstract In tennis, a high ball velocity and a fast run toward the net are key features to successful performance of “serve-and-volley” players. For the serve, tennis players can use two techniques: the foot-up (FU) or foot-back (FB) technique. The aim of this study was to determine if the running time toward the net after the serve and the ball velocity (Vball) vary between these two techniques. Moreover we analysed the angular momentum values of the trunk and of the arm holding the racquet. Fifteen expert tennis players performed six successful serve-and-volleys with both techniques. Running time to the net is significantly lower for FB, whereas Vball is significantly higher for FU. Trunk and arm angular momentums about the transverse axis are significantly higher with FU before ball impact. A significant correlation (r = 0.81, P < 0.001) exists between changes in the maximal trunk angular momentum and in running time to the net between the two serve techniques. A significant correlation (r = 0.84, P < 0.001) also exists between changes in the maximal trunk angular momentum and in Vball between the two serve techniques. According to these results, FB is the best technique for moving as quickly as possible to the net because of a lower trunk angular momentum.


Presence: Teleoperators & Virtual Environments | 2010

Virtual thrower versus real goalkeeper: The influence of different visual conditions on performance

Nicolas Vignais; Richard Kulpa; Cathy Craig; Benoit Bideau

In order to use virtual reality as a sport analysis tool, we need to be sure that an immersed athlete reacts realistically in a virtual environment. This has been validated for a real handball goalkeeper facing a virtual thrower. However, we currently ignore which visual variables induce a realistic motor behavior of the immersed handball goalkeeper. In this study, we used virtual reality to dissociate the visual information related to the movements of the player from the visual information related to the trajectory of the ball. Thus, the aim is to evaluate the relative influence of these different visual information sources on the goalkeepers motor behavior. We tested 10 handball goalkeepers who had to predict the final position of the virtual ball in the goal when facing the following: only the throwing action of the attacking player (TA condition), only the resulting ball trajectory (BA condition), and both the throwing action of the attacking player and the resulting ball trajectory (TB condition). Here we show that performance was better in the BA and TB conditions, but contrary to expectations, performance was substantially worse in the TA condition. A significant effect of ball landing zone does, however, suggest that the relative importance between visual information from the player and the ball depends on the targeted zone in the goal. In some cases, body-based cues embedded in the throwing actions may have a minor influence on the ball trajectory and vice versa. Kinematics analysis was then combined with these results to determine why such differences occur depending on the ball landing zone and consequently how it can clarify the role of different sources of visual information on the motor behavior of an athlete immersed in a virtual environment.


Medicine and Science in Sports and Exercise | 2013

Identification of Temporal Pathomechanical Factors during the Tennis Serve

Caroline Martin; Richard Kulpa; Mickaël Ropars; Paul Delamarche; Benoit Bideau

PURPOSE The purpose of this study was twofold: (a) to measure the effects of temporal parameters on both ball velocity and upper limb joint kinetics to identify pathomechanical factors during the tennis serve and (b) to validate these pathomechanical factors by comparing injured and noninjured players. METHODS The serves of expert tennis players were recorded with an optoelectronic motion capture system. These experts were then followed during two seasons to identify overuse injuries of the upper limb. Correlation coefficients assessed the relationships between temporal parameters, ball velocity, and peaks of upper limb joint kinetics to identify pathomechanical factors. Temporal parameters and ball velocity were compared between injured and noninjured groups. RESULTS Temporal pathomechanical factors were identified. The timings of peak angular velocities of pelvis longitudinal rotation, upper torso longitudinal rotation, trunk sagittal rotation, and trunk transverse rotation and the duration between instants of shoulder horizontal adduction and external rotation were significantly related to upper limb joint kinetics and ball velocity. Injured players demonstrated later timings of trunk rotations, improper differences in time between instants of shoulder horizontal adduction and external rotation, lower ball velocities, and higher joint kinetics. CONCLUSIONS The findings of this study imply that improper temporal mechanics during the tennis serve can decrease ball velocity, increase upper limb joint kinetics, and thus possibly increase overuse injuries of the upper limb.


Neurophysiologie Clinique-clinical Neurophysiology | 2015

Advantages and limitations of virtual reality for balance assessment and rehabilitation

M. Morel; Benoit Bideau; J. Lardy; Richard Kulpa

Virtual reality (VR) is now commonly used in many domains because of its ability to provide a standardized, reproducible and controllable environment. In balance assessment, it can be used to control stimuli presented to patients and thus accurately evaluate their progression or compare them to different populations in standardized situations. In balance rehabilitation, VR allows the creation of new generation tools and at the same time the means to assess the efficiency of each parameter of these tools in order to optimize them. Moreover, with the development of low-cost devices, this rehabilitation can be continued at home, making access to these tools much easier, in addition to their entertaining and thus motivating properties. Nevertheless, and even more with low-cost systems, VR has limits that can alter the results of the studies that use it: the latency of the system (the delay cumulated on each step of the process from data acquisition on the patients to multimodal outputs); and distance perception, which tends to be underestimated in VR. After having described why VR is an essential tool for balance assessment and rehabilitation and illustrated this statement with a case study, this review discusses the previous works in the domain with regards to the technological limits of VR.

Collaboration


Dive into the Benoit Bideau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cathy Craig

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge