Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benoît Fernandez is active.

Publication


Featured researches published by Benoît Fernandez.


Cellular and Molecular Life Sciences | 2013

Anti-infective properties of bacteriocins: an update

Riadh Hammami; Benoît Fernandez; Christophe Lacroix; Ismail Fliss

Bacteriocin production is a widespread phenomenon among bacteria. Bacteriocins hold great promise for the treatment of diseases caused by pathogenic bacteria and could be used in the future as alternatives to existing antibiotics. The anti-infective potential of bacteriocins for inhibiting pathogens has been shown in various food matrices including cheese, meat, and vegetables. However, their inhibition of pathogens in vivo remains unclear and needs more investigation, due mainly to difficulties associated with demonstrating their health benefits. Many bacteriocins produced by established or potential probiotic organisms have been evaluated as potential therapeutic agents and interesting findings have been documented in vitro as well as in a few in vivo studies. Some recent in vivo studies point to the efficacy of bacteriocin-based treatments of human and animal infections. While further investigation remains necessary before the possibilities for bacteriocins in clinical practice can be described more fully, this review provides an overview of their potential applications to human and veterinary health.


Carbohydrate Polymers | 2016

Digestibility and prebiotic properties of potato rhamnogalacturonan I polysaccharide and its galactose-rich oligosaccharides/oligomers

Nastaran Khodaei; Benoît Fernandez; Ismail Fliss; Salwa Karboune

Galactose-rich oligosaccharides/oligomers (oligo-RG I) were produced by the enzymatic treatment of potato galactan-rich rhamnogalacturonan I (RG I) with endo-β-1,4-galactanase and Depol 670L multi-enzymatic preparation. The digestibility study revealed that 81.6 and 79.3% of RG I and its corresponding oligomers remained unhydrolyzed, respectively. The prebiotic properties of RG I and its hydrolysates were investigated using a continuous culture system inoculated with immobilized fecal microbiota. Both RG I and oligo-RG I have stimulated the growth of Bifidobacterium spp. and Lactobacillus spp., with oligo-RG I hydrolysates being more selectively fermented by these beneficial bacteria. Furthermore, none of RG I nor its hydrolysates increased the populations of Bacteroidetes and Clostridium leptum. Total amounts of short chain fatty acids, generated upon the fermentation of oligo-RG I, were higher than those obtained with its parent RG I and the positive control (fructooligosaccharides). The overall study contributes to the understandings of the prebiotic properties of potato RG I and its corresponding oligosaccharides/oligomers.


Frontiers in Microbiology | 2015

On Lactococcus lactis UL719 competitivity and nisin (Nisaplin®) capacity to inhibit Clostridium difficile in a model of human colon

Christophe Le Lay; Benoît Fernandez; Riadh Hammami; Marc Ouellette; Ismail Fliss

Clostridium difficile is the most frequently identified enteric pathogen in patients with nosocomially acquired, antibiotic-associated diarrhea and pseudomembranous colitis. Although metronidazole and vancomycin were effective, an increasing number of treatment failures and recurrence of C. difficile infection are being reported. Use of probiotics, particularly metabolically active lactic acid bacteria, was recently proposed as an alternative for the medical community. The aim of this study was to assess a probiotic candidate, nisin Z-producer Lactococcus lactis UL719, competitivity and nisin (Nisaplin®) capacity to inhibit C. difficile in a model of human colon. Bacterial populations was enumerated by qPCR coupled to PMA treatment. L. lactis UL719 was able to survive and proliferate under simulated human colon, did not alter microbiota composition, but failed to inhibit C. difficile. While a single dose of 19 μmol/L (5× the MIC) was not sufficient to inhibit C. difficile, nisin at 76 μmol/L (20×the MIC) was effective at killing the pathogen. Nisin (at 76 μmol/L) caused some temporary changes in the microbiota with Gram-positive bacteria being the mostly affected. These results highlight the capacity of L. lactis UL719 to survive under simulated human colon and the efficacy of nisin as an alternative in the treatment of C. difficile infections.


Journal of Applied Microbiology | 2013

Growth, acid production and bacteriocin production by probiotic candidates under simulated colonic conditions

Benoît Fernandez; C. Le Lay; Jyh-Chang Jean; Ismail Fliss

The aim of this study is to evaluate the capacity of three bacteriocin producers, namely Lactococcus lactis subsp. lactis biovar diacetylactis UL719 (nisin Z producer), L. lactis ATCC 11454 (nisin A producer) and Pediococcus acidilactici UL5 (pediocin PA‐1 producer), and to grow and produce their active bacteriocins in Macfarlane broth, which mimics the nutrient composition encountered in the human large intestine.


Journal of Applied Microbiology | 2014

Pediococcus acidilactici UL5 and Lactococcus lactis ATCC 11454 are able to survive and express their bacteriocin genes under simulated gastrointestinal conditions

Benoît Fernandez; Riadh Hammami; Patricia Savard; Jyh-Chang Jean; Ismail Fliss

The aim of this work is to study the expression of stress genes and those involved in pediocin and nisin production in Pediococcus acidilactici UL5 and Lactococcus lactis ATCC11454 under simulated gastrointestinal (GI) physiological conditions.


Frontiers in Microbiology | 2017

Bacteriocin-Producing Enterococcus faecium LCW 44: A High Potential Probiotic Candidate from Raw Camel Milk

Allison Vimont; Benoît Fernandez; Riadh Hammami; Ahlem Ababsa; Hocine Daba; Ismail Fliss

Bacterial isolates from raw camel milk were screened for antibacterial activity using the agar diffusion assay. Ten isolates selected for their inhibition of Gram-positive bacteria were identified by 16S sequencing as Enterococcus faecium or durans. An isolate named E. faecium LCW 44 exhibited the broadest antibacterial spectrum with an inhibitory activity against several Gram-positive strains belonging to the genera Clostridium, Listeria, Staphylococcus, and Lactobacillus. E. faecium LCW 44 was shown to produce N-formylated enterocins L50A and L50B, as revealed by mass spectrometry and PCR analyses. This isolate did not harbor any of the virulence factors tested and was shown to be sensitive to all tested antibiotics. It showed high resistance to gastric and intestinal conditions (78 ± 4% survival). Its adhesion index was evaluated at 176 ± 86 and 24 ± 86 on Caco-2 cells and HT-29 cells, respectively, and it significantly reduced adhesion of Listeria monocytogenes by 65 and 49%, respectively. In Macfarlane broth (simulating the nutrient content of the colon), counts of L. monocytogenes were reduced by 2 log10 cycles after 24 h in co-culture with E. faecium LCW 44, compared to the increase of 4 log10 cycles when cultured alone. Comparison with a bacteriocin-non-producing mutant of E. faecium LCW 44 strongly suggests that inhibition of L. monocytogenes was due to bacteriocin production. Altogether, E. faecium LCW 44 thus has potential for use as a probiotic for humans and veterinary medicine.


International Journal of Food Microbiology | 2019

Quantitative antifungal activity of reuterin against food isolates of yeasts and moulds and its potential application in yogurt

Allison Vimont; Benoît Fernandez; Gomaa Ahmed; Helene-Pilote Fortin; Ismail Fliss

Reuterin is an antimicrobial agent produced by conversion of glycerol and excreted by several bacterial species including the food grade lactic acid bacterium Lactobacillus reuteri. Several inhibitory activities have been reported to reuterin against a broad range of Gram-positive and Gram-negative bacteria, bacterial spores, moulds, yeasts and protozoa. However, the antifungal and anti-yeast activity of reuterin is poorly documented. The aim of the current work was:1) To quantify the minimum inhibitory activity (MIC) and the minimum fungicidal activity (MFC) of reuterin against a representative panel of the most abundant fungi and yeast species associated with food contamination; 2) To investigate the application of reuterin as antifungal agent for biopreservation of yogurt. Reuterin was produced by L. reuteri ATCC 53608 in MRS and glycerol solution then purified before using. Our data showed that purified reuterin inhibited the growth of tested microorganisms at a concentration of 11 mM or less. Moreover, reuterin showed a fungicidal activity (killed 99.9% of all tested microorganisms) at concentrations equal or below 15.6 mM as indicated by MFC. Values of MFC were comprised between 1.0 and 4.8 of the MIC values, suggesting a potent fungicidal mechanism on both yeasts and filamentous moulds with one exception only. In yogurt, reuterin showed a fungistatic effect at a concentration of 1.38 mM while a fungicidal effect was obtained at 6.9 mM. Therefore, reuterin has a high potential as a food preservative, particularly owing to its biochemical properties and antibacterial and antifungal activities.


Frontiers in Microbiology | 2018

Fate and Biological Activity of the Antimicrobial Lasso Peptide Microcin J25 Under Gastrointestinal Tract Conditions

Sabrine Naimi; Séverine Zirah; Riadh Hammami; Benoît Fernandez; Sylvie Rebuffat; Ismail Fliss

The bacteriocin microcin J25 (MccJ25) inhibits the growth of Gram-negative pathogens including Salmonella and Shigella species, and Escherichia coli. This 21-amino acid peptide has remarkable stability to heat and extreme pH values and resistance to many proteases, thanks to a characteristic lasso structure. In this study, we used the dynamic simulator TIM-1 as gastro-intestinal tract model to evaluate the stability and antibacterial activity of MccJ25 during passage through the proximal portion of the human gastrointestinal tract. MccJ25 concentration was measured in the different simulator sections by HPLC, and inhibition of Salmonella enterica serotype Enteritidis was evaluated using qualitative and quantitative assays. LC-MS/MS analysis and subsequent molecular networking analysis on the Global Natural Product Social Molecular Networking platform (GNPS) and analysis of the peptide degradation in the presence of proteolytic enzymes mimicking the gastro-intestinal conditions permitted to delineate the fate of MccJ25 through identification of the main degradation products. MccJ25 was relatively stable under gastric conditions, but degraded rapidly in the compartment mimicking the duodenum, notably in the presence of pancreatin. Among pancreatin components, elastase I appeared primarily responsible for MccJ25 breakdown, while α-chymotrypsin was less efficient.


Microbial Ecology | 2016

Survival and Metabolic Activity of Pediocin Producer Pediococcus acidilactici UL5: Its Impact on Intestinal Microbiota and Listeria monocytogenes in a Model of the Human Terminal Ileum

Benoît Fernandez; Patricia Savard; Ismail Fliss


Probiotics and Antimicrobial Proteins | 2018

Isolation and Selection of Potential Probiotic Bacteria from the Pig Gastrointestinal Tract

Luca Lo Verso; M. Lessard; Guylaine Talbot; Benoît Fernandez; Ismail Fliss

Collaboration


Dive into the Benoît Fernandez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guylaine Talbot

Agriculture and Agri-Food Canada

View shared research outputs
Researchain Logo
Decentralizing Knowledge