Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Riadh Hammami is active.

Publication


Featured researches published by Riadh Hammami.


Nucleic Acids Research | 2009

PhytAMP: a database dedicated to antimicrobial plant peptides

Riadh Hammami; Jeannette Ben Hamida; Gérard Vergoten; Ismail Fliss

Plants produce small cysteine-rich antimicrobial peptides as an innate defense against pathogens. Based on amino acid sequence homology, these peptides were classified mostly as α-defensins, thionins, lipid transfer proteins, cyclotides, snakins and hevein-like. Although many antimicrobial plant peptides are now well characterized, much information is still missing or is unavailable to potential users. The compilation of such information in one centralized resource, such as a database would therefore facilitate the study of the potential these peptide structures represent, for example, as alternatives in response to increasing antibiotic resistance or for increasing plant resistance to pathogens by genetic engineering. To achieve this goal, we developed a new database, PhytAMP, which contains valuable information on antimicrobial plant peptides, including taxonomic, microbiological and physicochemical data. Information is very easy to extract from this database and allows rapid prediction of structure/function relationships and target organisms and hence better exploitation of plant peptide biological activities in both the pharmaceutical and agricultural sectors. PhytAMP may be accessed free of charge at http://phytamp.pfba-lab.org.


BMC Microbiology | 2010

BACTIBASE second release: a database and tool platform for bacteriocin characterization

Riadh Hammami; Abdelmajid Zouhir; Christophe Le Lay; Jeannette Ben Hamida; Ismail Fliss

BackgroundBACTIBASE is an integrated open-access database designed for the characterization of bacterial antimicrobial peptides, commonly known as bacteriocins.DescriptionFor its second release, BACTIBASE has been expanded and equipped with additional functions aimed at both casual and power users. The number of entries has been increased by 44% and includes data collected from published literature as well as high-throughput datasets. The database provides a manually curated annotation of bacteriocin sequences. Improvements brought to BACTIBASE include incorporation of various tools for bacteriocin analysis, such as homology search, multiple sequence alignments, Hidden Markov Models, molecular modelling and retrieval through our taxonomy Browser.ConclusionThe provided features should make BACTIBASE a useful tool in food preservation or food safety applications and could have implications for the development of new drugs for medical use. BACTIBASE is available at http://bactibase.pfba-lab-tun.org.


BMC Microbiology | 2007

BACTIBASE: a new web-accessible database for bacteriocin characterization

Riadh Hammami; Abdelmajid Zouhir; Jeannette Ben Hamida; Ismail Fliss

BackgroundBacteriocins are very diverse group of antimicrobial peptides produced by a wide range of bacteria and known for their inhibitory activity against various human and animal pathogens. Although many bacteriocins are now well characterized, much information is still missing or is unavailable to potential users. The assembly of such information in one central resource such as a database would therefore be of great benefit to the exploitation of these bioactive molecules in the present context of increasing antibiotic resistance and natural bio-preservation need.DescriptionIn the present paper, we present the development of a new and original database BACTIBASE that contains calculated or predicted physicochemical properties of 123 bacteriocins produced by both Gram-positive and Gram-negative bacteria. The information in this database is very easy to extract and allows rapid prediction of relationships structure/function and target organisms of these peptides and therefore better exploitation of their biological activity in both the medical and food sectors.ConclusionThe BACTIBASE database is freely available at http://bactibase.pfba-lab.org, web-based platform enabling easy retrieval, via various filters, of sets of bacteriocins that will enable detailed analysis of a number of microbiological and physicochemical data.


Cellular and Molecular Life Sciences | 2013

Anti-infective properties of bacteriocins: an update

Riadh Hammami; Benoît Fernandez; Christophe Lacroix; Ismail Fliss

Bacteriocin production is a widespread phenomenon among bacteria. Bacteriocins hold great promise for the treatment of diseases caused by pathogenic bacteria and could be used in the future as alternatives to existing antibiotics. The anti-infective potential of bacteriocins for inhibiting pathogens has been shown in various food matrices including cheese, meat, and vegetables. However, their inhibition of pathogens in vivo remains unclear and needs more investigation, due mainly to difficulties associated with demonstrating their health benefits. Many bacteriocins produced by established or potential probiotic organisms have been evaluated as potential therapeutic agents and interesting findings have been documented in vitro as well as in a few in vivo studies. Some recent in vivo studies point to the efficacy of bacteriocin-based treatments of human and animal infections. While further investigation remains necessary before the possibilities for bacteriocins in clinical practice can be described more fully, this review provides an overview of their potential applications to human and veterinary health.


Drug Discovery Today | 2010

Current trends in antimicrobial agent research: chemo- and bioinformatics approaches

Riadh Hammami; Ismail Fliss

Databases and chemo- and bioinformatics tools that contain genomic, proteomic and functional information have become indispensable for antimicrobial drug research. The combination of chemoinformatics tools, bioinformatics tools and relational databases provides means of analyzing, linking and comparing online search results. The development of computational tools feeds on a diversity of disciplines, including mathematics, statistics, computer science, information technology and molecular biology. The computational approach to antimicrobial agent discovery and design encompasses genomics, molecular simulation and dynamics, molecular docking, structural and/or functional class prediction, and quantitative structure-activity relationships. This article reviews progress in the development of computational methods, tools and databases used for organizing and extracting biological meaning from antimicrobial research.


Pharmaceutical Biology | 2009

Antimicrobial properties of aqueous extracts from three medicinal plants growing wild in arid regions of Tunisia

Riadh Hammami; Abdelmajid Zouhir; Jeannette Ben Hamida; Mohamed Neffati; Gérard Vergoten; Karim Naghmouchi; Ismail Fliss

Seed extracts of three plant species that grow wild in the arid regions of Tunisia, Juniperus phoenicea L. (Cupressaceae), Pistacia atlantica Desf. (Anacardiaceae), and Oudneya africana R. Br. (Brassicaceae), were examined for antimicrobial activity against bacterial food pathogens. Aqueous extracts were prepared and then precipitated with methanol or acetone. Extracted acetone fractions (pH 7.2) showed powerful antimicrobial activity, especially against Listeria monocytogenes, Listeria innocua, and Listeria ivanovii (Gram-positive) and were also active against Gram-negative strains Escherichia coli and Pseudomonas aeruginosa. Extracts selected for high antimicrobial activity were stable in the presence of organic solvents (chloroform, hexane, acetonitrile, methanol, and acetone), and withstand thermal treatments up to 100°C for 30 min. L. monocytogenes LSD530 and E. coli ATCC 25922 appeared to be inhibited by Juniperus and Pistacia extracts with a minimum concentration of 1.56 and 3. 12 mg/mL, respectively. This study established the potential of medicinal plants growing wild in arid regions of Tunisia as a source of antimicrobial agents.


Protein Journal | 2010

A New Structure-based Classification of Gram-positive Bacteriocins

Abdelmajid Zouhir; Riadh Hammami; Ismail Fliss; Jeannette Ben Hamida

Bacteriocins are ribosomally-synthesized peptides or proteins produced by a wide range of bacteria. The antimicrobial activity of this group of natural substances against foodborne pathogenic and spoilage bacteria has raised considerable interest for their application in food preservation. Classifying these bacteriocins in well defined classes according to their biochemical properties is a major step towards characterizing these anti-infective peptides and understanding their mode of action. Actually, the chosen criteria for bacteriocins’ classification lack consistency and coherence. So, various classification schemes of bacteriocins resulted various levels of contradiction and sorting inefficiencies leading to bacteriocins belonging to more than one class at the same time and to a general lack of classification of many bacteriocins. Establishing a coherent and adequate classification scheme for these bacteriocins is sought after by several researchers in the field. It is not straightforward to formulate an efficient classification scheme that encompasses all of the existing bacteriocins. In the light of the structural data, here we revisit the previously proposed contradictory classification and we define new structure-based sequence fingerprints that support a subdivision of the bacteriocins into 12 groups. The paper lays down a resourceful and consistent classification approach that resulted in classifying more than 70% of bacteriocins known to date and with potential to identify distinct classes for the remaining unclassified bacteriocins. Identified groups are characterized by the presence of highly conserved short amino acid motifs. Furthermore, unclassified bacteriocins are expected to form an identified group when there will be sufficient sequences.


BMC Genomics | 2011

DetoxiProt: an integrated database for detoxification proteins

Zhen Yang; Ying Yu; Lei Yao; Guangui Li; Lin Wang; Yiyao Hu; Haibin Wei; Li Wang; Riadh Hammami; Roxanne Razavi; Yang Zhong; Xufang Liang

BackgroundDetoxification proteins are a class of proteins for degradation and/or elimination of endogenous and exogenous toxins or medicines, as well as reactive oxygen species (ROS) produced by these materials. Most of these proteins are generated as a response to the stimulation of toxins or medicines. They are essential for the clearance of harmful substances and for maintenance of physiological balance in organisms. Thus, it is important to collect and integrate information on detoxification proteins.ResultsTo store, retrieve and analyze the information related to their features and functions, we developed the DetoxiProt, a comprehensive database for annotation of these proteins. This database provides detailed introductions about different classes of the detoxification proteins. Extensive annotations of these proteins, including sequences, structures, features, inducers, inhibitors, substrates, chromosomal location, functional domains as well as physiological-biochemical properties were generated. Furthermore, pre-computed BLAST results, multiple sequence alignments and evolutionary trees for detoxification proteins are also provided for evolutionary study of conserved function and pathways. The current version of DetoxiProt contains 5956 protein entries distributed in 628 organisms. An easy to use web interface was designed, so that annotations about each detoxification protein can be retrieved by browsing with a specific method or by searching with different criteria.ConclusionsDetoxiProt provides an effective and efficient way of accessing the detoxification protein sequences and other high-quality information. This database would be a valuable source for toxicologists, pharmacologists and medicinal chemists. DetoxiProt database is freely available at http://lifecenter.sgst.cn/detoxiprot/.


Frontiers in Microbiology | 2015

On Lactococcus lactis UL719 competitivity and nisin (Nisaplin®) capacity to inhibit Clostridium difficile in a model of human colon

Christophe Le Lay; Benoît Fernandez; Riadh Hammami; Marc Ouellette; Ismail Fliss

Clostridium difficile is the most frequently identified enteric pathogen in patients with nosocomially acquired, antibiotic-associated diarrhea and pseudomembranous colitis. Although metronidazole and vancomycin were effective, an increasing number of treatment failures and recurrence of C. difficile infection are being reported. Use of probiotics, particularly metabolically active lactic acid bacteria, was recently proposed as an alternative for the medical community. The aim of this study was to assess a probiotic candidate, nisin Z-producer Lactococcus lactis UL719, competitivity and nisin (Nisaplin®) capacity to inhibit C. difficile in a model of human colon. Bacterial populations was enumerated by qPCR coupled to PMA treatment. L. lactis UL719 was able to survive and proliferate under simulated human colon, did not alter microbiota composition, but failed to inhibit C. difficile. While a single dose of 19 μmol/L (5× the MIC) was not sufficient to inhibit C. difficile, nisin at 76 μmol/L (20×the MIC) was effective at killing the pathogen. Nisin (at 76 μmol/L) caused some temporary changes in the microbiota with Gram-positive bacteria being the mostly affected. These results highlight the capacity of L. lactis UL719 to survive under simulated human colon and the efficacy of nisin as an alternative in the treatment of C. difficile infections.


Applied and Environmental Microbiology | 2015

Stability of Secondary and Tertiary Structures of Virus-Like Particles Representing Noroviruses: Effects of pH, Ionic Strength, and Temperature and Implications for Adhesion to Surfaces

Idrissa Samandoulgou; Riadh Hammami; Rocio Morales Rayas; Ismail Fliss; Julie Jean

ABSTRACT Loss of ordered molecular structure in proteins is known to increase their adhesion to surfaces. The aim of this work was to study the stability of norovirus secondary and tertiary structures and its implications for viral adhesion to fresh foods and agrifood surfaces. The pH, ionic strength, and temperature conditions studied correspond to those prevalent in the principal vehicles of viral transmission (vomit and feces) and in the food processing and handling environment (pasteurization and refrigeration). The structures of virus-like particles representing GI.1, GII.4, and feline calicivirus (FCV) were studied using circular dichroism and intrinsic UV fluorescence. The particles were remarkably stable under most of the conditions. However, heating to 65°C caused losses of β-strand structure, notably in GI.1 and FCV, while at 75°C the α-helix content of GII.4 and FCV decreased and tertiary structures unfolded in all three cases. Combining temperature with pH or ionic strength caused variable losses of structure depending on the particle type. Regardless of pH, heating to pasteurization temperatures or higher would be required to increase GII.4 and FCV adhesion, while either low or high temperatures would favor GI.1 adhesion. Regardless of temperature, increased ionic strength would increase GII.4 adhesion but would decrease GI.1 adhesion. FCV adsorption would be greater at refrigeration, pasteurization, or high temperature combined with a low salt concentration or at a higher NaCl concentration regardless of temperature. Norovirus adhesion mediated by hydrophobic interaction may depend on hydrophobic residues normally exposed on the capsid surface at pH 3, pH 8, physiological ionic strength, and low temperature, while at pasteurization temperatures it may rely more on buried hydrophobic residues exposed upon structural rearrangement.

Collaboration


Dive into the Riadh Hammami's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karim Naghmouchi

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge