Benoit Neichel
Aix-Marseille University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Benoit Neichel.
Monthly Notices of the Royal Astronomical Society | 2014
Francois Rigaut; Benoit Neichel; Maxime Boccas; Céline d'Orgeville; Fabrice Vidal; Marcos A. van Dam; Gustavo Arriagada; Vincent Fesquet; Ramon Galvez; Gaston Gausachs; Chad Cavedoni; Angelic Ebbers; Stan Karewicz; Eric James; Javier Lührs; Vanessa Montes; Gabriel Perez; William Rambold; Roberto Rojas; Shane Walker; Matthieu Bec; Gelys Trancho; Michael Sheehan; Benjamin Irarrazaval; Corinne Boyer; Brent Ellerbroek; Ralf Flicker; Damien Gratadour; Aurea Garcia-Rissmann; Felipe Daruich
The Gemini multiconjugate adaptive optics system (GeMS) at the Gemini South telescope in Cerro Pachon is the first sodium-based multilaser guide star (LGS) adaptive optics system. It uses five LGSs and two deformable mirrors to measure and compensate for atmospheric distortions. The GeMS project started in 1999, and saw first light in 2011. It is now in regular operation, producing images close to the diffraction limit in the near-infrared, with uniform quality over a field of view of two square arcminutes. This paper is the first one in a two-paper review of GeMS. It describes the system, explains why and how it was built, discusses the design choices and trade-offs, and presents the main issues encountered during the course of the project. Finally, we briefly present the results of the system first light.
Monthly Notices of the Royal Astronomical Society | 2014
Benoit Neichel; Francois Rigaut; Fabrice Vidal; Marcos A. van Dam; Vincent Garrel; Eleazar R. Carrasco; Peter Pessev; Claudia Winge; Maxime Boccas; Céline d'Orgeville; Gustavo Arriagada; Andrew Serio; Vincent Fesquet; William Rambold; Javier Lührs; Cristian Moreno; Gaston Gausachs; Ramon Galvez; Vanessa Montes; Tomislav Vucina; Eduardo Marin; Cristian Urrutia; Ariel Lopez; Sarah J. Diggs; Claudio Marchant; Angelic Ebbers; Chadwick Trujillo; Matthieu Bec; Gelys Trancho; Peter J. McGregor
The Gemini Multi-conjugate Adaptive Optics System - GeMS, a facility instrument mounted on the Gemini South telescope, delivers a uniform, near di↵raction limited images at near infrared wavelengths (0.95 µm - 2.5 µm) over a field of view of 120 00 . GeMS is the first sodium layer based multi laser guide star adaptive optics system used in astronomy. It uses five laser guide stars distributed on a 60 00 square constellation to measure for atmospheric distortions and two deformable mirrors to compensate for it. In this paper, the second devoted to describe the GeMS project, we present the commissioning, overall performance and operational scheme of GeMS. Performance of each sub-system is derived from the commissioning results. The typical image quality, expressed in full with half maximum, Strehl ratios and variations over the field delivered by the system are then described. A discussion of the main contributor to performance limitation is carried-out. Finally, overheads and future system upgrades are described.
Monthly Notices of the Royal Astronomical Society | 2014
Mathilde Jauzac; Eric Jullo; D. Eckert; Harald Ebeling; Johan Richard; Marceau Limousin; Hakim Atek; Jean-Paul Kneib; Benjamin Clément; E. Egami; David Harvey; Kenda Knowles; Richard Massey; Priyamvada Natarajan; Benoit Neichel; Markus Rexroth
We use a joint optical/X-ray analysis to constrain the geometry and history of the ongoing merging event in the massive galaxy cluster MACSJ0416.1-2403(z=0.397). Our investigation of cluster substructure rests primarily on a combined strong- and weak-lensing mass reconstruction based on the deep, high-resolution images obtained for the Hubble Frontier Fields initiative. To reveal the system’s dynamics, we complement this lensing analysis with a study of the intracluster gas using shallow Chandra data, and a three-dimensional model of the distribution and motions of cluster galaxies derived from over 100 spectroscopic redshifts. The multiscale grid model obtained from our combined lensing analysis extends the high-precision strong-lensing mass reconstruction recently performed to cluster-centric distances of almost 1 Mpc. Our analysis detects the two well-known mass concentrations in the cluster core. A pronounced offset between collisional and collisionless matter is only observed for the SW cluster component, while excellent alignment is found for the NE cluster. Both the lensing analysis and the distribution of cluster light strongly suggest the presence of a third massive structure, almost 2 arcmin SW of the cluster centre. Since no X-ray emission is detected in this region, we conclude that this structure is non-virialized and speculate that it might be part of a large-scale filament almost aligned with our line of sight. Combining all evidence from the distribution of dark and luminous matter, we propose two alternative scenarios for the trajectories of the components of MACSJ0416.1-2403. Upcoming deep X-ray observations that allow the detection of shock fronts, cold cores, and sloshing gas (all key diagnostics for studies of cluster collisions) will allow us to test, and distinguish between these two scenarios.
Journal of The Optical Society of America A-optics Image Science and Vision | 2009
Benoit Neichel; Thierry Fusco; Jean-Marc Conan
Several wide-field-of-view adaptive optics (WFAO) concepts such as multi-conjugate AO (MCAO), multi-object AO (MOAO), and ground-layer AO (GLAO) are currently being studied for the next generation of Extremely Large Telescopes (ELTs). All these concepts will use atmospheric tomography to reconstruct the turbulent-phase volume. In this paper, we explore different reconstruction algorithms and their fundamental limitations, conducting this analysis in the Fourier domain. This approach allows us to derive simple analytical formulations for the different configurations and brings a comprehensive view of WFAO limitations. We then investigate model and statistical errors and their effect on the phase reconstruction. Finally, we show some examples of different WFAO systems and their expected performance on a 42 m telescope case.
Monthly Notices of the Royal Astronomical Society | 2012
Angela Cortés; Benoit Neichel; Andrés Guesalaga; James Osborn; Francois Rigaut; Dani Guzman
This paper describes the data pre-processing and reduction methods together with SLOpe Detection And Ranging (SLODAR) analysis and wind profiling techniques for the Gemini South Multi-Conjugate Adaptive Optics System (GeMS). The wavefront gradient measurements of the five GeMS Shack–Hartmann sensors, each pointing to a laser guide star, are combined with the deformable mirror (DM) commands sent to three DMs optically conjugated at 0, 4.5 and 9 km in order to reconstruct pseudo-open loop slopes. These pseudo-open loop slopes are then used to reconstruct atmospheric turbulence profiles, based on the SLODAR and wind-profiling methods. We introduce the SLODAR method, and how it has been adapted to work in a closed-loop, multi-laser guide star system. We show that our method allows characterizing the turbulence of up to 16 layers for altitudes spanning from 0 to 19 km. The data pre-processing and reduction methods are described, and results obtained from observations made in 2011 are presented. The wind profiling analysis is shown to be a powerful technique not only for characterizing the turbulence intensity, wind direction and speed, but also as it can provide a verification tool for SLODAR results. Finally, problems such as the fratricide effect in multiple laser systems due to Rayleigh scattering, centroid gain variations, and limitations of the method are also addressed.
Monthly Notices of the Royal Astronomical Society | 2014
Benoit Neichel; Jessica R. Lu; Francois Rigaut; S. Mark Ammons; Eleazar R. Carrasco; Emmanuel Lassalle
The Gemini multiconjugate adaptive optics system (GeMS) is a facility instrument for the Gemini South telescope. It delivers uniform, near-diffraction-limited image quality at near-infrared wavelengths over a 2 arc min field of view. Together with the Gemini South Adaptive Optics Imager (GSAOI), a near-infrared wide-field camera, GeMS/GSAOIs combination of high spatial resolution and a large field of view will make it a premier facility for precision astrometry. Potential astrometric science cases cover a broad range of topics including exoplanets, star formation, stellar evolution, star clusters, nearby galaxies, black holes and neutron stars, and the Galactic Centre. In this paper, we assess the astrometric performance and limitations of GeMS/GSAOI. In particular, we analyse deep, mono-epoch images, multi-epoch data and distortion calibration. We find that for single-epoch, undithered data, an astrometric error below 0.2 mas can be achieved for exposure times exceeding 1 min, provided enough stars are available to remove high-order distortions. We show however that such performance is not reproducible for multi-epoch observations, and an additional systematic error of similar to 0.4 mas is evidenced. This systematic multi-epoch error is the dominant error term in the GeMS/GSAOI astrometric error budget, and it is thought to be due to time-variable distortion induced by gravity flexure.
Proceedings of SPIE | 2012
Franҫois Rigaut; Benoit Neichel; Maxime Boccas; Céline d'Orgeville; Gustavo Arriagada; Vincent Fesquet; Sarah J. Diggs; Claudio Marchant; Gaston Gausach; William Rambold; Javier Lührs; Shane Walker; Eleazar Rodrigo Carrasco-Damele; Michelle L. Edwards; Peter Pessev; Ramon Galvez; Tomislav Vucina; Claudio Araya; Alejandro Gutierrez; Angelic Ebbers; Andrew Serio; Cristian Moreno; Cristian Urrutia; Rolando Rogers; Roberto Rojas; Chadwick Trujillo; Bryan W. Miller; Douglas A. Simons; Ariel Lopez; Vanessa Montes
GeMS, the Gemini Laser Guide Star Multi-Conjugate Adaptive Optics facility system, has seen first light in December 2011, and has already produced images with H band Strehl ratio in excess of 35% over fields of view of 85x85 arcsec, fulfilling the MCAO promise. In this paper, we report on these early results, analyze trends in performance, and concentrate on key or novel aspects of the system, like centroid gain estimation, on-sky non common path aberration estimation. We also present the first astrometric analysis, showing very encouraging results.
Proceedings of SPIE | 2012
Eleazar R. Carrasco; Michelle L. Edwards; Peter J. McGregor; Claudia Winge; Peter J. Young; Matthew Doolan; Jan van Harmelen; Francois Rigaut; Benoit Neichel; Gelys Trancho; Étienne Artigau; Peter Pessev; Felipe Colazo; Jennifer Tigner; Francesco Mauro; Javier Lührs; William Rambold
We present the results from the commissioning of the Gemini South Adaptive Optics Imager (GSAOI). Capable of delivering diffraction limited images in the near-infrared, over an 85′′ ×85′′ square field-of-view, GSAOI was designed for use with the Gemini Multi-Conjugate Adaptive Optics (GeMS) system in operation at the Gemini South Observatory. The instrument focal plane, covered by an array of four HAWAII-2RG detectors, contains 4080×4080 pixels and has a plate scale of 0.02′′ – thus capitalizing on the superb image quality delivered by both the all-refractive optical design of GSAOI and the Gemini South MCAO system. Here, we discuss our preliminary findings from the GSAOI commissioning, concentrating on detector characterization, on-sky performance and system throughput. Further specifics about the Gemini MCAO system can be found in other presentations at this conference.
Proceedings of SPIE | 2010
Benoit Neichel; Francois Rigaut; Matthieu Bec; Maxime Boccas; Felipe Daruich; Céline d'Orgeville; Vincent Fesquet; Ramon Galvez; Aurea Garcia-Rissmann; Gaston Gausachs; Matteo Lombini; Gabriel Perez; Gelys Trancho; V. Upadhya; Tomislav Vucina
GeMS (the Gemini Multi-conjugated adaptive optics System) is a facility instrument for the Gemini-South telescope. It will deliver a uniform, diffraction-limited image quality at near-infrared (NIR) wavelengths over an extended FoV or more than 1 arcmin across. GeMS is a unique and challenging project from the technological point of view and because of its control complexity. The system includes 5 laser guide stars, 3 natural guide stars, 3 deformable mirrors optically conjugated at 0, 4.5 and 9km and 1 tip-tilt mirror. After 10 years since the beginning of the project, GeMS is finally reaching a state in which all the subsystems have been received, integrated and, in the large part, tested. In this paper, we report on the progress and current status of the different sub-systems with a particular emphasis on the calibrations, control and optimization of the AO bench.
Applied Optics | 2012
Andrés Guesalaga; Benoit Neichel; Francois Rigaut; James Osborn; Dani Guzman
Vibrations are detrimental to the performance of modern adaptive optics (AO) systems. In this paper, we describe new methods tested to mitigate the vibrations encountered in some of the instruments of the Gemini South telescope. By implementing a spectral analysis of the slope measurements from several wavefront sensors and an imager, we can determine the frequencies and magnitude of these vibrations. We found a persistent vibration at 55 Hz with others occurring occasionally at 14 and 100 Hz. Two types of AO controllers were designed and implemented, Kalman and H∞, in the multiconjugate AO tip-tilt loop. The first results show a similar performance for these advanced controllers and a clear improvement in vibration rejection and overall performance over the classical integrator scheme. It is shown that the reduction in the standard deviation of the residual slopes (as measured by wavefront sensors) is highly dependent on turbulence, wind speed, and vibration conditions, ranging--in terms of slopes RMS value--from an almost negligible reduction for high speed wind to a factor of 5 for a combination of low wind and strong vibrations.