Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where T. Fusco is active.

Publication


Featured researches published by T. Fusco.


Optics Express | 2006

High-order adaptive optics requirements for direct detection of extrasolar planets: Application to the SPHERE instrument

T. Fusco; Gerard Rousset; Jean-François Sauvage; Cyril Petit; Jean-Luc Beuzit; Kjetil Dohlen; David Mouillet; Julien Charton; M. Nicolle; M. Kasper; Pierre Baudoz; Pascal Puget

The detection of extrasolar planets implies an extremely high-contrast, long-exposure imaging capability at near infrared and probably visible wavelengths. We present here the core of any Planet Finder instrument, that is, the extreme adaptive optics (XAO) subsystem. The level of AO correction directly impacts the exposure time required for planet detection. In addition, the capacity of the AO system to calibrate all the instrument static defects ultimately limits detectivity. Hence, the extreme AO system has to adjust for the perturbations induced by the atmospheric turbulence, as well as for the internal aberrations of the instrument itself. We propose a feasibility study for an extreme AO system in the frame of the SPHERE (Spectro-Polarimetry High-contrast Exoplanet Research) instrument, which is currently under design and should equip one of the four VLT 8-m telescopes in 2010.


Astronomy and Astrophysics | 2016

First light of the VLT planet finder SPHERE III. New spectrophotometry and astrometry of the HR 8799 exoplanetary system

A. Zurlo; A. Vigan; R. Galicher; A.-L. Maire; D. Mesa; R. Gratton; G. Chauvin; M. Kasper; Claire Moutou; M. Bonnefoy; S. Desidera; Lyu Abe; Daniel Apai; Andrea Baruffolo; Pierre Baudoz; J. Baudrand; J.-L. Beuzit; P. Blancard; A. Boccaletti; F. Cantalloube; M. Carle; E. Cascone; Julien Charton; R. U. Claudi; A. Costille; V. De Caprio; Kjetil Dohlen; C. Dominik; D. Fantinel; Philippe Feautrier

Context. The planetary system discovered around the young A-type HR 8799 provides a unique laboratory to: a) test planet formation theories; b) probe the diversity of system architectures at these separations, and c) perform comparative (exo)planetology. Aims. We present and exploit new near-infrared images and integral-field spectra of the four gas giants surrounding HR 8799 obtained with SPHERE, the new planet finder instrument at the Very Large Telescope, during the commissioning and science verification phase of the instrument (July–December 2014). With these new data, we contribute to completing the spectral energy distribution (SED) of these bodies in the 1.0–2.5 μm range. We also provide new astrometric data, in particular for planet e, to further constrain the orbits. Methods. We used the infrared dual-band imager and spectrograph (IRDIS) subsystem to obtain pupil-stabilized, dual-band H2H3 (1.593 μm, 1.667 μm), K1K2 (2.110 μm, 2.251 μm), and broadband J (1.245 μm) images of the four planets. IRDIS was operated in parallel with the integral field spectrograph (IFS) of SPHERE to collect low-resolution (R ~ 30), near-infrared (0.94–1.64 μm) spectra of the two innermost planets HR 8799 d and e. The data were reduced with dedicated algorithms, such as the Karhunen-Loeve image projection (KLIP), to reveal the planets. We used the so-called negative planets injection technique to extract their photometry, spectra, and measure their positions. We illustrate the astrometric performance of SPHERE through sample orbital fits compatible with SPHERE and literature data. Results. We demonstrated the ability of SPHERE to detect and characterize planets in this kind of systems, providing spectra and photometry of its components. The spectra improve upon the signal-to-noise ratio of previously obtained data and increase the spectral coverage down to the Y band. In addition, we provide the first detection of planet e in the J band. Astrometric positions for planets HR 8799 bcde are reported for the epochs of July, August, and December 2014. We measured the photometric values in J, H2H3, K1K2 bands for the four planets with a mean accuracy of 0.13 mag. We found upper limit constraints on the mass of a possible planet f of 3–7 MJup . Our new measurements are more consistent with the two inner planets d and e being in a 2d:1e or 3d:2e resonance. The spectra of HR 8799 d and e are well matched by those of L6-8 field dwarfs. However, the SEDs of these objects are redder than field L dwarfs longward of 1.6 μm.


Astronomy and Astrophysics | 2006

Fundamental limitations on Earth-like planet detection with extremely large telescopes

C. Cavarroc; A. Boccaletti; Pierre Baudoz; T. Fusco; D. Rouan

We analyse the fundamental limitations for the detection of extraterrestrial planets with Extremely Large Telescopes. For this task, a coronagraphic device combined with a very high order wavefront correction system is required but is not sufficient to achieve the 10 -10 contrast level needed to detect an Earth-like planet. The stellar residuals left uncorrected by the wavefront correction system need to be calibrated and subtracted. We consider a general model including the dynamic phase aberrations downstream of the wavefront correction system, the static phase aberrations of the instrument and some differential aberrations provided by the calibration unit. A rather optimistic case of a filled circular pupil and of a perfect coronagraph is assumed. As a result of the analytical study, the limitation is found to mostly come from the static aberrations. We confirm this result using numerical simulations and evaluate the requirements in terms of phase aberrations to detect Earth-like planets with Extremely Large Telescopes.


Astronomy and Astrophysics | 2016

First light of the VLT planet finder SPHERE I. Detection and characterization of the substellar companion GJ 758 B

A. Vigan; M. Bonnefoy; C. Ginski; H. Beust; R. Galicher; Markus Janson; J.-L. Baudino; Esther Buenzli; J. Hagelberg; Valentina D'Orazi; S. Desidera; A.-L. Maire; R. Gratton; Jean-François Sauvage; G. Chauvin; C. Thalmann; L. Malo; G. Salter; A. Zurlo; J. Antichi; Andrea Baruffolo; Pierre Baudoz; P. Blanchard; A. Boccaletti; J.-L. Beuzit; M. Carle; R. U. Claudi; A. Costille; A. Delboulbé; Kjetil Dohlen

GJ 758 B is a brown dwarf companion to a nearby (15.76%) solar-type, metal-rich (M/H = +0.2 dex) main-sequence star (G9V) that was discovered with Subaru/HiCIAO in 2009. From previous studies, it has drawn attention as being the coldest (similar to 600 K) companion ever directly imaged around a neighboring star. We present new high-contrast data obtained during the commissioning of the SPHERE instrument at the Very Large Telescope (VLT). The data was obtained in Y-, J-, H-, and K-s-bands with the dual-band imaging (DBI) mode of IRDIS, thus providing a broad coverage of the full near-infrared (near-IR) range at higher contrast and better spectral sampling than previously reported. In this new set of high-quality data, we report the re-detection of the companion, as well as the first detection of a new candidate closer-in to the star. We use the new eight photometric points for an extended comparison of GJ 758 B with empirical objects and four families of atmospheric models. From comparison to empirical object, we estimate a T8 spectral type, but none of the comparison objects can accurately represent the observed near-IR fluxes of GJ 758 B. From comparison to atmospheric models, we attribute a T-eff = 600 +/- 100 K, but we find that no atmospheric model can adequately fit all the fluxes of GJ 758 B. The lack of exploration of metal enrichment in model grids appears as a major limitation that prevents an accurate estimation of the companion physical parameters. The photometry of the new candidate companion is broadly consistent with L-type objects, but a second epoch with improved photometry is necessary to clarify its status. The new astrometry of GJ 758 B shows a significant proper motion since the last epoch. We use this result to improve the determination of the orbital characteristics using two fitting approaches: Least-Squares Monte Carlo and Markov chain Monte Carlo. We confirm the high-eccentricity of the orbit (peak at 0.5), and find a most likely semi-major axis of 46.05 AU. We also use our imaging data, as well as archival radial velocity data, to reject the possibility that this is a false positive effect created by an unseen, closer-in, companion. Finally, we analyze the sensitivity of our data to additional closer-in companions and reject the possibility of other massive brown dwarf companions down to 4-5 AU.


Nature | 2015

Fast-moving features in the debris disk around AU Microscopii

A. Boccaletti; Christian Thalmann; Anne-Marie Lagrange; Markus Janson; Jean Charles Augereau; Glenn Schneider; J. Milli; C. A. Grady; John H. Debes; M. Langlois; David Mouillet; Thomas Henning; C. Dominik; Anne Lise Maire; Jean-Luc Beuzit; Kjetil Dohlen; N. Engler; Markus Feldt; T. Fusco; C. Ginski; J. H. Girard; Dean C. Hines; Markus Kasper; Dimitri Mawet; Francois Menard; Michael R. Meyer; Claire Moutou; J. Olofsson; Timothy J. Rodigas; Jean Francois Sauvage

In the 1980s, excess infrared emission was discovered around main-sequence stars; subsequent direct-imaging observations revealed orbiting disks of cold dust to be the source. These ‘debris disks’ were thought to be by-products of planet formation because they often exhibited morphological and brightness asymmetries that may result from gravitational perturbation by planets. This was proved to be true for the β Pictoris system, in which the known planet generates an observable warp in the disk. The nearby, young, unusually active late-type star AU Microscopii hosts a well-studied edge-on debris disk; earlier observations in the visible and near-infrared found asymmetric localized structures in the form of intensity variations along the midplane of the disk beyond a distance of 20 astronomical units. Here we report high-contrast imaging that reveals a series of five large-scale features in the southeast side of the disk, at projected separations of 10–60 astronomical units, persisting over intervals of 1–4 years. All these features appear to move away from the star at projected speeds of 4–10 kilometres per second, suggesting highly eccentric or unbound trajectories if they are associated with physical entities. The origin, localization, morphology and rapid evolution of these features are difficult to reconcile with current theories.


Astronomy and Astrophysics | 2006

Five new very low mass binaries

G. Montagnier; D. Segransan; J.-L. Beuzit; T. Forveille; P. Delorme; Xavier Delfosse; C. Perrier; S. Udry; M. Mayor; G. Chauvin; Anne-Marie Lagrange; David Mouillet; T. Fusco; Pierre Gigan; Eric Stadler

Laboratoire d’´Etudes Spatiales et d’Instrumentation Astrophysique, F-9 2195 Meudon Cedex, FranceReceivedAbstract.We report the discovery of companions to 5 nearby late M dwarfs (>M5), LHS1901, LHS4009, LHS6167,LP869-26 and WT460, and we confirm that the recently discovered mid-T brown dwarf companion to SCR1845-6357 is physically bound to that star. These discoveries result from our adaptive optics survey of all M dwarfswithin 12 pc. The new companions have spectral types M5 to L1, and orbital separations between 1 and 10 AU.They add significantly to the number of late M dwarfs binaries in the immediate solar neighbourhood, and willimprove the multiplicity statistics of late M dwarfs. The expected periods range from 3 to 130 years. Several pairsthus have good potential for accurate mass determination in this poorly sampled mass range.Key words. binaries: visual – stars: low mass, brown dwarfs – techniques: adaptive optics


Astronomy and Astrophysics | 2003

Adaptive optics imaging survey of the Tucana-Horologium association

G. Chauvin; M. Thomson; Christophe Dumas; J.-L. Beuzit; Patrick J. Lowrance; T. Fusco; A.-M. Lagrange; B. Zuckerman; David Mouillet

We present the results of an adaptive optics (AO) imaging survey of the common associations of Tucana and Horologium, carried out at the ESO 3.6 m telescope with the ADONIS/SHARPII system. Based on our observations of two dozen probable association members, HIP 1910 and HIP 108422 appear to have low-mass stellar companions, while HIP 6856 and GSC 8047-0232 have possible sub-stellar candidate companions. Astrometric measurements, performed in November 2000 and October 2001, indicate that HIP 1910 B likely is bound to its primary, but are inconclusive in the case of the candidate companion to HIP 6856. Additional observations are needed to confirm the HIP 6856 companionship as well as for HIP 108422 and GSC 8047-0232.


Astronomy and Astrophysics | 2005

Astrometric and spectroscopic confirmation of a brown dwarf companion to GSC 08047-00232. VLT/NACO deep imaging and spectroscopic observations

G. Chauvin; A.-M. Lagrange; Francois Lacombe; Christophe Dumas; David Mouillet; B. Zuckerman; Eric Gendron; Inseok Song; J.-L. Beuzit; Patrick J. Lowrance; T. Fusco

We report VLT/NACO imaging observations of the stars GSC 08047-00232 and HIP 6856, probable members of the large Tucana-Horologium association. During our previous ADONIS/SHARPII deep imaging survey, a substellar candidate companion was discovered around each star. Based on VLT/NACO astrometric measurements, we find that GSC 08047-00232 and the faint candidate companion near to it share the same proper motion with a significance of 3.1 σ. On the contrary, the candidate companion to HIP 6856 is probably a background object with a significance of 4.3 σ. We also detect a new fainter and closer candidate companion to HIP 6856, but which is likely a background object too with a significance of 4 σ. Recent VLT/NACO spectroscopic measurements of GSC 08047-00232 finally confirm the substellar nature of this young brown dwarf with a derived spectral type M 9.5±1. GSC 08047-00232 B, with an estimated mass of 25±10 MJup and an effective temperature of 2100 ± 200 K, is presently the third substellar companion identified among young, nearby associations.


Astronomy and Astrophysics | 2005

LP 349-25: A new tight M8V binary

T. Forveille; J.-L. Beuzit; P. Delorme; D. Ségransan; Xavier Delfosse; G. Chauvin; T. Fusco; A.-M. Lagrange; M. Mayor; G. Montagnier; David Mouillet; C. Perrier; S. Udry; Julien Charton; P. Gigan; J.-M. Conan; P. Kern; G. Michet

We present the discovery of a tight M8V binary, with a separation of only 1.2 astronomical units, obtained with the PUEO and NACO adaptive optics systems, respectively at the CFHT and VLT telescopes. The estimated period of LP 349-25 is approximately 5 years, and this makes it an excellent candidate for a precise mass measurement.


Proceedings of SPIE | 2006

First laboratory demonstration of closed-loop Kalman based optimal control for vibration filtering and simplified MCAO

Cyril Petit; Jean-Marc Conan; Caroline Kulcsár; Henri-François Raynaud; T. Fusco; J. Montri; Didier Rabaud

Classic Adaptive Optics (AO) is now successfully implemented on a growing number of ground-based imaging systems. Nevertheless some limitations are still to cope with. First, the AO standard control laws are unable to easily handle vibrations. In the particular case of eXtreme AO (XAO), which requires a highly efficient AO, these vibrations can thus be much penalizing. We have previously shown that a Kalman based control law can provide both an efficient correction of the turbulence and a strong vibration filtering. Second, anisoplanatism effects lead to a small corrected field of view. Multi-Conjugate AO (MCAO) is a promising concept that should increase significantly this field of view. We have shown numerically that MCAO correction can be highly improved by optimal control based on a Kalman filter. This article presents the first laboratory demonstration of these two concepts. We use a classic AO bench available at Onera with a deformable mirror (DM) in the pupil and a Shack-Hartmann Wave Front Sensor (WFS) pointing at an on-axis guide-star. The turbulence is produced by a rotating phase screen in altitude. First, this AO configuration is used to validate the ability of our control approach to filter out system vibrations and improve the overall performance of the AO closed-loop, compared to classic controllers. The consequences on the RTC design of an XAO system is discussed. Then, we optimize the correction for an off-axis star although the WFS still points at the on-axis star. This Off-Axis AO (OAAO) can be seen as a first step towards MCAO or Multi-Object AO in a simplified configuration. It proves the ability of our control law to estimate the turbulence in altitude and correct in the direction of interest. We describe the off-axis correction tests performed in a dynamic mode (closed-loop) using our Kalman based control. We present the evolution of the off-axis correction according to the angular separation between the stars. A highly significant improvement in performance is demonstrated.

Collaboration


Dive into the T. Fusco's collaboration.

Top Co-Authors

Avatar

David Mouillet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

J.-L. Beuzit

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Benoit Neichel

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Vigan

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Kjetil Dohlen

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

A. Costille

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

A.-M. Lagrange

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Eric Gendron

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge