Benoni B. Edin
Umeå University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Benoni B. Edin.
The Journal of Physiology | 1995
Benoni B. Edin; Niclas Johansson
1. We investigated the contribution of skin strain‐related sensory inputs to movement perception and execution in five normal volunteers. The dorsal and palmar skin of the middle phalanx and the proximal interphalangeal (PIP) joint were manipulated to generate specific strain patterns in the proximal part of the index finger. To mask sensations directly related to this manipulation, skin and deeper tissues were blocked distal to the mid‐portion of the proximal phalanx of the index finger by local anaesthesia. 2. Subjects were asked to move their normal right index finger either to mimic any perceived movements of the anaesthetized finger or to touch the tip of the insentient finger. 3. All subjects readily reproduced actual movements induced by the experimenter at the anaesthetized PIP joint. However, all subjects also generated flexion movements when the experimenter did not induce actual movement but produced deformations in the sentient proximal skin that were similar to those observed during actual PIP joint flexion. Likewise, the subjects indicated extension movement at the PIP joint when strain patterns corresponding to extension movements were induced. 4. In contrast, when the skin strain in the proximal part of the index finger was damped by a ring applied just proximal to the PIP joint within the anaesthetized skin area, both tested subjects failed to perceive PIP movements that actually took place.(ABSTRACT TRUNCATED AT 250 WORDS)
Biological Cybernetics | 2006
Maria Chiara Carrozza; Giovanni Cappiello; Silvestro Micera; Benoni B. Edin; L. Beccai; Christian Cipriani
Strong motivation for developing new prosthetic hand devices is provided by the fact that low functionality and controllability—in addition to poor cosmetic appearance—are the most important reasons why amputees do not regularly use their prosthetic hands. This paper presents the design of the CyberHand, a cybernetic anthropomorphic hand intended to provide amputees with functional hand replacement. Its design was bio-inspired in terms of its modular architecture, its physical appearance, kinematics, sensorization, and actuation, and its multilevel control system. Its underactuated mechanisms allow separate control of each digit as well as thumb–finger opposition and, accordingly, can generate a multitude of grasps. Its sensory system was designed to provide proprioceptive information as well as to emulate fundamental functional properties of human tactile mechanoreceptors of specific importance for grasp-and-hold tasks. The CyberHand control system presumes just a few efferent and afferent channels and was divided in two main layers: a high-level control that interprets the user’s intention (grasp selection and required force level) and can provide pertinent sensory feedback and a low-level control responsible for actuating specific grasps and applying the desired total force by taking advantage of the intelligent mechanics. The grasps made available by the high-level controller include those fundamental for activities of daily living: cylindrical, spherical, tridigital (tripod), and lateral grasps. The modular and flexible design of the CyberHand makes it suitable for incremental development of sensorization, interfacing, and control strategies and, as such, it will be a useful tool not only for clinical research but also for addressing neuroscientific hypotheses regarding sensorimotor control.
The Journal of Physiology | 2001
Benoni B. Edin
1 Neurophysiological evidence that afferent information from skin receptors is important for proprioception has been gathered mainly in experiments relating to the human hand and finger joints. To investigate if proprioceptive information is also provided by skin mechanoreceptor afferents from skin areas related to large joints of postural importance, microneurography recordings were obtained in humans from skin afferents in the lateral cutaneous femoral nerve to study their responses to knee joint movements. 2 Data were collected from 60 sequentially recorded afferents from slowly (n= 23) and fast (n= 6) adapting low‐threshold mechanoreceptors, hair follicle receptors (n= 24), field receptors (n= 1) and C mechanoreceptors (n= 6). Fascicular recordings showed that the lateral cutaneous femoral nerve supplies extensive areas of the thigh: from 5‐10 cm below the inguinal ligament down to below and lateral to the knee joint; accordingly, the afferents originated in receptors located in wide areas of the human thigh. 3 All afferents from fast and slowly adapting low‐threshold mechanoreceptors, as well as C mechanoreceptors, responded to manually applied skin stretch. In contrast, the same stimulus elicited, at most, feeble responses in hair follicle receptors. 4 Qualitative and quantitative analyses of the responses of a subset of afferents revealed that in particular slowly adapting afferents effectively encode both static and dynamic aspects of passively imposed knee joint movements. 5 It was concluded that receptors in the hairy skin of humans can provide high‐fidelity information about knee joint movements. A previously undefined type of slowly adapting receptor (SA III) seemed particularly suited for this task whereas this does not seem to be the case for either hair follicle receptors or C mechanoreceptors.
The Journal of Physiology | 1992
Benoni B. Edin; G. Westling; Roland S. Johansson
1. Subjects lifted an object with two parallel vertical grip surfaces and a low centre of gravity using the precision grip between the tips of the thumb and index finger. The friction between the object and the digits was varied independently at each digit by changing the contact surfaces between lifts. 2. With equal frictional conditions at the two grip surfaces, the finger‐tip forces were about equal at the two digits, i.e. similar vertical lifting forces and grip forces were used. With different frictions, the digit touching the most slippery surface exerted less vertical lifting force than the digit in contact with the rougher surface. Thus, the safety margins against slips were similar at the two digits whether they made contact with surfaces of similar or different friction. 3. During digital nerve block, large and variable safety margins were employed, i.e. the finger‐tip forces did not reflect the surface conditions. Slips occurred more frequently than under normal conditions (14% of all trials with nerve block, <5% during normal conditions), and they only occasionally elicited compensatory adjustments of the finger‐tip forces and then at prolonged latencies. 4. The partitioning of the vertical lifting force between the digits was thus dependent on digital afferent inputs and resulted from active automatic regulation and not just from the mechanics of the task. 5. The safety margin employed at a particular digit was mainly determined by the frictional conditions encountered by the digit, and to a lesser degree by the surface condition at the same digit in the previous lift (anticipatory control), but was barely influenced by the surface condition at the other digit. 6. It was concluded that the finger‐tip forces were independently controlled for each digit according to a ‘non‐slip strategy’. The findings suggest that the force distribution among the digits represents a digit‐specific lower‐level neural control establishing a stable grasp. This control relies on digit‐specific afferent inputs and somatosensory memory information. It is apparently subordinated to a higher‐level control that is related to the total vertical lifting and normal forces required by the lifting task and the relevant physical properties of the manipulated object.
Brain Research Bulletin | 2008
Benoni B. Edin; Luca Ascari; L. Beccai; Stefano Roccella; J-J Cabibihan; Maria Chiara Carrozza
It has been concluded from numerous neurophysiological studies that humans rely on detecting discrete mechanical events that occur when grasping, lifting and replacing an object, i.e., during a prototypical manipulation task. Such events represent transitions between phases of the evolving manipulation task such as object contact, lift-off, etc., and appear to provide critical information required for the sequential control of the task as well as for corrections and parameterization of the task. We have sensorized a biomechatronic anthropomorphic hand with the goal to detect such mechanical transients. The developed sensors were designed to specifically provide the information about task-relevant discrete events rather than to mimic their biological counterparts. To accomplish this we have developed (1) a contact sensor that can be applied to the surface of the robotic fingers and that show a sensitivity to indentation and a spatial resolution comparable to that of the human glabrous skin, and (2) a sensitive low-noise three-axial force sensor that was embedded in the robotic fingertips and showed a frequency response covering the range observed in biological tactile sensors. We describe the design and fabrication of these sensors, their sensory properties and show representative recordings from the sensors during grasp-and-lift tasks. We show how the combined use of the two sensors is able to provide information about crucial mechanical events during such tasks. We discuss the importance of the sensorized hand as a test bed for low-level grasp controllers and for the development of functional sensory feedback from prosthetic devices.
Experimental Brain Research | 1997
Magnus K. O. Burstedt; Benoni B. Edin; Roland S. Johansson
Abstract We investigated the coordination of fingertip forces in subjects who lifted an object (i) using the index finger and thumb of their right hand, (ii) using their left and right index fingers, and (iii) cooperatively with another subject using the right index finger. The forces applied normal and tangential to the two parallel grip surfaces of the test object and the vertical movement of the object were recorded. The friction between the object and the digits was varied independently at each surface between blocks of trials by changing the materials covering the grip surfaces. The object’s weight and surface materials were held constant across consecutive trials. The performance was remarkably similar whether the task was shared by two subjects or carried out unimanually or bimanually by a single subject. The local friction was the main factor determining the normal:tangential force ratio employed at each digit-object interface. Irrespective of grasp configuration, the subjects adapted the force ratios to the local frictional conditions such that they maintained adequate safety margins against slips at each of the engaged digits during the various phases of the lifting task. Importantly, the observed force adjustments were not obligatory mechanical consequences of the task. In all three grasp configurations an incidental slip at one of the digits elicited a normal force increase at both engaged digits such that the normal:tangential force ratio was restored at the non-slipping digit and increased at the slipping digit. The initial development of the fingertip forces prior to object lift-off revealed that the subjects employed digit-specific anticipatory mechanisms using weight and frictional experiences in the previous trial. Because grasp stability was accomplished in a similar manner whether the task was carried out by one subject or cooperatively by two subjects, it was concluded that anticipatory adjustments of the fingertip forces can emerge from the action of anatomically independent neural networks controlling each engaged digit. In contrast, important aspects of the temporal coordination of the digits was organized by a “higher level” sensory – based control that influenced both digits. In lifts by single subjects this control was mast probably based on tactile and visual input and on communication between neural control mechanisms associated with each digit. In the two-subject grasp configuration this synchronization information was based on auditory and visual cues.
Journal of Neuroscience Methods | 1988
Benoni B. Edin; P A Bäckström; L O Bäckström
A microprocessor-based device was constructed to retrieve single unit activity from nerve recordings contaminated by other units and EMG activity. The microneurographic signal is sampled at 10 kHz and an algorithm applied to identify impulses from a single nerve fibre. On line, a TTL pulse is delivered when an event, i.e. a provisional nerve impulse, is selected. The wave form and clock time of events are stored. Moreover, the latest selected event and the actual selection criteria are continuously displayed on a standard oscilloscope. Off line, the wave form and clock time of events as well as an instantaneous frequency plot can be displayed on the oscilloscope. The final selection of events is done with a combination of a second algorithm, which essentially is a wave form comparator, and a manual check. The device is controlled either by hardware, with knobs on the front panel, or by software through a data bus connected to a microcomputer. Clock times and wave forms of the events, which are stored in the microprocessor memory, may also be presented on the data bus for later off-line analysis and coordination with other related signals collected during the experiment, e.g. transducer and electromyography records, whether these were stored on analog or digital tape or computer disc. Compared to other available techniques, the device has a superior discriminative power when electromyographic artefacts are present.
The Journal of Physiology | 1988
Benoni B. Edin; A B Vallbo
1. Sixty‐seven afferents from the finger extensor muscles were consecutively recorded by microneurography. 2. The units were classified as primary or secondary muscle spindle afferents or Golgi tendon organ afferents on the basis of their responses to ramp‐and‐hold stretches, sinusoidals superimposed on ramp‐and‐hold stretches, maximal twitch contractions and isometric contractions and relaxations. 3. The muscle was repeatedly stretched and then either kept short or long for a few seconds followed by a slow ramp stretch. The responses of the muscle afferents to the slow stretch were compared under the two conditions. 4. Thirty out of thirty‐eight units classified as primary spindle afferents and four out of eleven units classified as secondary afferents showed an enhanced response to the slow ramp when the muscle had been kept short compared to the response when the muscle had been kept long. 5. None of the eighteen Golgi tendon organ afferents showed any difference in this respect. 6. It is concluded that stretch sensitization does occur in human muscle spindles and, when present, constitutes firm evidence of the afferent originating from a muscle spindle rather than a Golgi tendon organ. In addition, due to differences in the response characteristics of primaries and secondaries, the test may aid in separating muscle spindle primary afferents from secondary afferents.
Experimental Brain Research | 1990
Benoni B. Edin
SummaryThe responses of non-cutaneous receptors in the human hand to normal digit movements were studied using single afferent recordings from the radial nerve. Eight joint-related afferents had thresholds of 50 mN or less. All responded to passive flexion movements within the physiological range of joint rotation and showed predominantly static response sensitivity; none increased its discharge during passive extension. However, only two of these eight afferents showed the same response pattern during active movements; three discharged only during the extension phase whereas the other three discharged both during extension and flexion. No highthreshold, joint-related mechanoreceptive afferents were encountered in a population of 148 afferents recorded from the cutaneous portion of the radial nerve indicating a scarcity of such afferents on the dorsal aspect of finger joints. Seven high-threshold, subcutaneous mechanoreceptive units not related to joints had thresholds for indentations of 50 mN or more and lacked responses to finger movements. Low-threshold mechanoreceptive afferents related to joints in the human hand may thus provide kinematic information in the physiological midrange of both passive and active movements. Joint position cannot, however, be derived unambiguously from their discharge since the receptor responses may be dramatically altered by muscle activity.
The Journal of Neuroscience | 2008
Michael Dimitriou; Benoni B. Edin
Human grasping relies on feedforward control that is monitored and corrected on-line by means of sensory feedback. While much of the sensory mechanisms underpinning hand-object interaction are known, information has been lacking about muscle receptor responses during the phases before and after actual object contact. We therefore let subjects use their thumb and fingers to grasp blocks presented to them while we recorded muscle afferents from the thumb and finger extensor muscles along with wrist and digit kinematics, and electromyographic activity. The kinematics of the task was indistinguishable from “normal” grasping. None of the afferents encoded either object contact or finger apposition. Both primary and secondary afferents were more phase advanced on the parent muscle lengths than expected from previous studies as well as from their responses to imposed length changes of their parent muscles. Thus, the discharges of both primary and secondary afferents were well correlated to the tendon velocity of their parent muscles and that of primary afferents also to acceleration whereas neither appeared to encode muscle length as such. Decoding the velocity of muscle length changes were significantly improved if the discharge of Golgi tendon organ afferents were taken into account along with that of the muscle spindle afferents. We propose that these findings may be explained by the biomechanical properties of contracting muscles. Moreover, we conclude that it seems unlikely that the muscle spindle afferents recorded in this task have any role in providing “proprioceptive” information pertaining to the size of an object grasped.