Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bent Larsen Petersen is active.

Publication


Featured researches published by Bent Larsen Petersen.


Plant Physiology | 2003

Modulation of CYP79 Genes and Glucosinolate Profiles in Arabidopsis by Defense Signaling Pathways

Michael Dalgaard Mikkelsen; Bent Larsen Petersen; Erich Glawischnig; Anders Bøgh Jensen; Erik Andreasson; Barbara Ann Halkier

Glucosinolates are natural plant products that function in the defense toward herbivores and pathogens. Plant defense is regulated by multiple signal transduction pathways in which salicylic acid (SA), jasmonic acid, and ethylene function as signaling molecules. Glucosinolate content was analyzed in Arabidopsis wild-type plants in response to single or combinatorial treatments with methyljasmonate (MeJA), 2,6-dichloro-isonicotinic acid, ethylene, and 2,4-dichloro-phenoxyacetic acid, or by wounding. In addition, several signal transduction mutants and the SA-depleted transgenic NahG line were analyzed. In parallel, expression of glucosinolate biosynthetic genes of the CYP79 gene family and the UDPG:thiohydroximate glucosyltransferase was monitored. After MeJA treatment, the amount of indole glucosinolates increased 3- to 4-fold, and the corresponding Trp-metabolizing genes CYP79B2 andCYP79B3 were both highly induced. Specifically, the indole glucosinolateN-methoxy-indol-3-ylmethylglucosinolate accumulated 10-fold in response to MeJA treatment, whereas 4-methoxy-indol-3-ylmethylglucosinolate accumulated 1.5-fold in response to 2,6-dichloro-isonicotinic acid. In general, few changes were seen for the levels of aliphatic glucosinolates, although increases in the levels of 8-methylthiooctyl glucosinolate and 8-methylsulfinyloctyl glucosinolate were observed, particularly after MeJA treatments. The findings were supported by the composition of glucosinolates in the coronatine-insensitive mutantcoi1, the ctr1 mutant displaying constitutive triple response, and the SA-overproducingmpk4 and cpr1 mutants. The present data indicate that different indole glucosinolate methoxylating enzymes are induced by the jasmonate and the SA signal transduction pathways, whereas the aliphatic glucosinolates appear to be primarily genetically and not environmentally controlled. Thus, different defense pathways activate subsets of biosynthetic enzymes, leading to the accumulation of specific glucosinolates.


Planta | 2002

Composition and content of glucosinolates in developing Arabidopsis thaliana

Bent Larsen Petersen; Sixue Chen; Carsten Hørslev Hansen; Carl Erik Olsen; Barbara Ann Halkier

Abstract. The glucosinolate composition and content in various tissues of Arabidopsis thaliana (L.) Heynh. ecotype Columbia during development from seeds to bolting plants were determined in detail by high-performance liquid chromatography. Comparison of the glucosinolate profiles of leaves, roots and stems from mature plants with those of green siliques and mature seeds indicated that a majority of the seed glucosinolates were synthesized de novo in the silique. A comparison of the glucosinolate profile of mature seeds with that of cotyledons indicated that a major part of seed glucosinolates was retained in the cotyledons. Turnover of glucosinolates was studied by germination of seeds containing radiolabelled p-hydroxybenzylglucosinolate (p-OHBG). Approximately 70% of the content of [14C]p-OHBG in the seeds was detected in seedlings at the cotyledon stage and [14C]p-OHBG was barely detectable in young plants with rosettes of six to eight leaves. The turnover of p-OHBG was found to coincide with the expression of the glucosinolate-degrading enzyme myrosinase, which was detectable at very low levels in seedlings at the cotyledon stage, but which dramatically increased in leaves from plants at later developmental stages. This indicates that there is a continuous turnover of glucosinolates during development and not only upon tissue disruption.


Science | 2011

O-Glycosylated Cell Wall Proteins Are Essential in Root Hair Growth

Silvia M. Velasquez; Martiniano M. Ricardi; Javier Gloazzo Dorosz; Paula Virginia Fernández; Alejandro D. Nadra; Laercio Pol-Fachin; Jack Egelund; Sascha Gille; Jesper Harholt; Marina Ciancia; Hugo Verli; Markus Pauly; Antony Bacic; Carl Erik Olsen; Peter Ulvskov; Bent Larsen Petersen; Chris Somerville; Norberto D. Iusem; José M. Estevez

Sequential protein posttranslational modifications facilitate cell wall self-assembly and root hair elongation in Arabidopsis. Root hairs are single cells that develop by tip growth and are specialized in the absorption of nutrients. Their cell walls are composed of polysaccharides and hydroxyproline-rich glycoproteins (HRGPs) that include extensins (EXTs) and arabinogalactan-proteins (AGPs). Proline hydroxylation, an early posttranslational modification of HRGPs that is catalyzed by prolyl 4-hydroxylases (P4Hs), defines the subsequent O-glycosylation sites in EXTs (which are mainly arabinosylated) and AGPs (which are mainly arabinogalactosylated). We explored the biological function of P4Hs, arabinosyltransferases, and EXTs in root hair cell growth. Biochemical inhibition or genetic disruption resulted in the blockage of polarized growth in root hairs and reduced arabinosylation of EXTs. Our results demonstrate that correct O-glycosylation on EXTs is essential for cell-wall self-assembly and, hence, root hair elongation in Arabidopsis thaliana.


Plant Physiology | 2003

CYP83A1 and CYP83B1, Two Nonredundant Cytochrome P450 Enzymes Metabolizing Oximes in the Biosynthesis of Glucosinolates in Arabidopsis

Peter Naur; Bent Larsen Petersen; Michael Dalgaard Mikkelsen; Søren Bak; Hasse B. Rasmussen; Carl Erik Olsen; Barbara Ann Halkier

In the glucosinolate pathway, the postoxime enzymes have been proposed to have low specificity for the side chain and high specificity for the functional group. Here, we provide biochemical evidence for the functional role of the two cytochromes P450, CYP83A1 and CYP83B1, from Arabidopsis in oxime metabolism in the biosynthesis of glucosinolates. In a detailed analysis of the substrate specificities of the recombinant enzymes heterologously expressed in yeast (Saccharomyces cerevisiae), we show that aliphatic oximes derived from chain-elongated homologs of methionine are efficiently metabolized by CYP83A1, whereas CYP83B1 metabolizes these substrates with very low efficiency. Aromatic oximes derived from phenylalanine, tryptophan, and tyrosine are metabolized by both enzymes, although CYP83B1 has higher affinity for these substrates than CYP83A1, particularly in the case of indole-3-acetaldoxime, where there is a 50-fold difference in Km value. The data show that CYP83A1 and CYP83B1 are nonredundant enzymes under physiologically normal conditions in the plant. The ability of CYP83A1 to metabolize aromatic oximes, albeit at small levels, explains the presence of indole glucosinolates at various levels in different developmental stages of the CYP83B1 knockout mutant, rnt1-1. Plants overexpressing CYP83B1 contain elevated levels of aliphatic glucosinolates derived from methionine homologs, whereas the level of indole glucosinolates is almost constant in the overexpressing lines. Together with the previous characterization of the members of the CYP79 family involved in oxime production, this work provides a framework for metabolic engineering of glucosinolates and for further dissection of the glucosinolate pathway.


The Plant Cell | 2006

Arabidopsis thaliana RGXT1 and RGXT2 Encode Golgi-Localized (1,3)-α-d-Xylosyltransferases Involved in the Synthesis of Pectic Rhamnogalacturonan-II

Jack Egelund; Bent Larsen Petersen; Mohammed Saddik Motawia; Iben Damager; Ahmed Faik; Carl Erik Olsen; Tadashi Ishii; Henrik Clausen; Peter Ulvskov; Naomi Geshi

Two homologous plant-specific Arabidopsis thaliana genes, RGXT1 and RGXT2, belong to a new family of glycosyltransferases (CAZy GT-family-77) and encode cell wall (1,3)-α-d-xylosyltransferases. The deduced amino acid sequences contain single transmembrane domains near the N terminus, indicative of a type II membrane protein structure. Soluble secreted forms of the corresponding proteins expressed in insect cells showed xylosyltransferase activity, transferring d-xylose from UDP-α-d-xylose to l-fucose. The disaccharide product was hydrolyzed by α-xylosidase, whereas no reaction was catalyzed by β-xylosidase. Furthermore, the regio- and stereochemistry of the methyl xylosyl-fucoside was determined by nuclear magnetic resonance to be an α-(1,3) linkage, demonstrating the isolated glycosyltransferases to be (1,3)-α-d-xylosyltransferases. This particular linkage is only known in rhamnogalacturonan-II, a complex polysaccharide essential to vascular plants, and is conserved across higher plant families. Rhamnogalacturonan-II isolated from both RGXT1 and RGXT2 T-DNA insertional mutants functioned as specific acceptor molecules in the xylosyltransferase assay. Expression of RGXT1- and RGXT2-enhanced green fluorescent protein constructs in Arabidopsis revealed that both fusion proteins were targeted to a Brefeldin A–sensitive compartment and also colocalized with the Golgi marker dye BODIPY TR ceramide, consistent with targeting to the Golgi apparatus. Taken together, these results suggest that RGXT1 and RGXT2 encode Golgi-localized (1,3)-α-d-xylosyltransferases involved in the biosynthesis of pectic rhamnogalacturonan-II.


Plant Physiology | 2004

A Complementary Bioinformatics Approach to Identify Potential Plant Cell Wall Glycosyltransferase-Encoding Genes

Jack Egelund; Michael Skjøt; Naomi Geshi; Peter Ulvskov; Bent Larsen Petersen

Plant cell wall (CW) synthesizing enzymes can be divided into the glycan (i.e. cellulose and callose) synthases, which are multimembrane spanning proteins located at the plasma membrane, and the glycosyltransferases (GTs), which are Golgi localized single membrane spanning proteins, believed to participate in the synthesis of hemicellulose, pectin, mannans, and various glycoproteins. At the Carbohydrate-Active enZYmes (CAZy) database where e.g. glucoside hydrolases and GTs are classified into gene families primarily based on amino acid sequence similarities, 415 Arabidopsis GTs have been classified. Although much is known with regard to composition and fine structures of the plant CW, only a handful of CW biosynthetic GT genes—all classified in the CAZy system—have been characterized. In an effort to identify CW GTs that have not yet been classified in the CAZy database, a simple bioinformatics approach was adopted. First, the entire Arabidopsis proteome was run through the Transmembrane Hidden Markov Model 2.0 server and proteins containing one or, more rarely, two transmembrane domains within the N-terminal 150 amino acids were collected. Second, these sequences were submitted to the SUPERFAMILY prediction server, and sequences that were predicted to belong to the superfamilies NDP-sugartransferase, UDP-glycosyltransferase/glucogen-phosphorylase, carbohydrate-binding domain, Gal-binding domain, or Rossman fold were collected, yielding a total of 191 sequences. Fifty-two accessions already classified in CAZy were discarded. The resulting 139 sequences were then analyzed using the Three-Dimensional-Position-Specific Scoring Matrix and mGenTHREADER servers, and 27 sequences with similarity to either the GT-A or the GT-B fold were obtained. Proof of concept of the present approach has to some extent been provided by our recent demonstration that two members of this pool of 27 non-CAZy-classified putative GTs are xylosyltransferases involved in synthesis of pectin rhamnogalacturonan II (J. Egelund, B.L. Petersen, A. Faik, M.S. Motawia, C.E. Olsen, T. Ishii, H. Clausen, P. Ulvskov, and N. Geshi, unpublished data).


Chemoecology | 2001

Responses of the flea beetles Phyllotreta nemorum and P. cruciferae to metabolically engineered Arabidopsis thaliana with an altered glucosinolate profile

Jens Kvist Nielsen; Mads L. Hansen; Niels Agerbirk; Bent Larsen Petersen; Barbara Ann Halkier

Summary. Insects feeding on Cruciferae recognize their host plants at least partially by means of specific responses to glucosinolates. However, the effects of variations in glucosinolate levels on the acceptability of plants for specialized insects are not well understood. A survey of the literature demonstrated positive, no, as well as negative correlations between plant acceptability and glucosinolate levels. The present study took advantage of the presence of transgenic Arabidopsis thaliana plants with increased glucosinolate levels. Transgenic A. thaliana contain the CYP79A1 gene from Sorghum bicolor. This gene encodes an enzyme which converts L-tyrosine into p-hydroxyphenylacetaldoxime in the biosynthesis of cyanogenic glycosides in S. bicolor. In transgenic A. thaliana plants, endogenous enzymes convert p-hydroxyphenylacetaldoxime into p-hydroxybenzylglucosinolate (sinalbin), which is not found naturally in this plant. The introduction of CYP79A1 resulted in a four-fold increase in total glucosinolate levels in transgenic A. thaliana plants. Although these changes in glucosinolate levels were rather dramatic, they did not have any effects on the acceptability of A. thaliana for the two flea beetle species, Phyllotreta nemorum and P. cruciferae. The flea beetles did not discriminate between transgenic and wildtype plants. Furthermore, they did not discriminate between leaf discs of wildtype plants where different concentrations of p-hydroxybenzylglucosinolate had been applied topically on the leaf surface. Feeding in P. nemorum was stimulated by extremely high levels of allylglucosinolate while this compound had no effect on P. cruciferae. It is concluded that the effect of glucosinolates on adapted insects depends on the chemical or physical environment in which the glucosinolates are found.


Journal of Antimicrobial Chemotherapy | 2012

Novel inhibitory activity of the Staphylococcus aureus NorA efflux pump by a kaempferol rhamnoside isolated from Persea lingue Nees

Jes Gitz Holler; S. Brøgger Christensen; Hans-Christian Slotved; Hasse B. Rasmussen; Alfonso Guzmán; Carl-Erik Olsen; Bent Larsen Petersen; Per Mølgaard

OBJECTIVES To isolate a plant-derived compound with efflux inhibitory activity towards the NorA transporter of Staphylococcus aureus. METHODS Bioassay-guided isolation was used, with inhibition of ethidium bromide efflux via NorA as a guide. Characterization of activity was carried out using MIC determination and potentiation studies of a fluoroquinolone antibiotic in combination with the isolated compound. Everted membrane vesicles of Escherichia coli cells enriched with NorA were prepared to study efflux inhibitory activity in an isolated manner. RESULTS The ethanolic extract of Persea lingue was subjected to bioassay-guided fractionation and led to the isolation of the known compound kaempferol-3-O-α-L-(2,4-bis-E-p-coumaroyl)rhamnoside (compound 1). Evaluation of the dose-response relationship of compound 1 showed that ethidium bromide efflux was inhibited, with an IC(50) value of 2 μM. The positive control, reserpine, was found to have an IC(50) value of 9 μM. Compound 1 also inhibited NorA in enriched everted membrane vesicles of E. coli. Potentiation studies revealed that compound 1 at 1.56 mg/L synergistically increased the antimicrobial activity of ciprofloxacin 8-fold against a NorA overexpresser, and the synergistic activity was exerted at a fourth of the concentration necessary for reserpine. Compound 1 was not found to exert a synergistic effect on ciprofloxacin against a norA deletion mutant. The 2,3-coumaroyl isomer of compound 1 has been shown previously not to cause acute toxicity in mice at 20 mg/kg/day. CONCLUSIONS Our results show that compound 1 acts through inhibition of the NorA efflux pump. Combination of compound 1 with subinhibitory concentrations of ciprofloxacin renders a wild-type more susceptible and a NorA overexpresser S. aureus susceptible.


Planta | 2001

Characterization of transgenic Arabidopsis thaliana with metabolically engineered high levels of p-hydroxybenzylglucosinolate.

Bent Larsen Petersen; Erik Andreasson; Søren Bak; Niels Agerbirk; Barbara Ann Halkier

Abstract. The cytochrome P450 CYP79A1 catalyzes the conversion of l-tyrosine to p-hydroxyphenylacetaldoxime, the first step in the biosynthetic pathway of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench. We have demonstrated that introduction of CYP79A1 into Arabidopsis thaliana (L.) Heynh. results in the production of the tyrosine-derived glucosinolate p-hydroxybenzylglucosinolate (p-OHBG), not found in wild-type A. thaliana (Bak et al., 1999, Plant J. 20: 663–671). In the present study, glucosinolate profiles and contents in various tissues (roots, leaves, stems, closed flower buds and green siliques) of A. thaliana plants expressing CYP79A1 were analyzed by high-performance liquid chromatography. The total glucosinolate content in these tissues was increased 3.5- to 4.5-fold in comparison with the level of the control plants. The increase was due solely to the production of p-OHBG, as the composition of the major endogenous aliphatic and indole glucosinolates was not affected. Conversely, in mature seeds the total glucosinolate content of CYP79A1 and control plants was similar, with p-OHBG accounting for ca. 30%. The transcript level of the post-oxime enzyme UDP-glucose:thiohydroximate glucosyltransferase in leaves of CYP79A1 plants was increased ca. 50% compared with control plants, indicating that the post-oxime enzymes in the biosynthetic pathway are up-regulated. Western blot analysis and activity measurements showed similar amounts and activities of myrosinase in CYP79A1 and control plants. Thus, the increase in glucosinolate content in CYP79A1 plants was not accompanied by an increase in content or activity of degradation enzyme. The present data demonstrate that the high biosynthetic capacity of the post-oxime enzymes combined with a low substrate-specificity of the post-oxime enzymes in A. thaliana provide a highly flexible system for metabolic engineering of glucosinolate profiles, including new (non-endogenous) glucosinolates derived from oximes introduced into the plant, e.g. by transformation with CYP79 homologues.


PLOS ONE | 2012

The Glycosyltransferase Repertoire of the Spikemoss Selaginella moellendorffii and a Comparative Study of Its Cell Wall

Jesper Harholt; Iben Sørensen; Jonatan U. Fangel; Alison W. Roberts; William G. T. Willats; Henrik Vibe Scheller; Bent Larsen Petersen; Jo Ann Banks; Peter Ulvskov

Spike mosses are among the most basal vascular plants, and one species, Selaginella moellendorffii, was recently selected for full genome sequencing by the Joint Genome Institute (JGI). Glycosyltransferases (GTs) are involved in many aspects of a plant life, including cell wall biosynthesis, protein glycosylation, primary and secondary metabolism. Here, we present a comparative study of the S. moellendorffii genome across 92 GT families and an additional family (DUF266) likely to include GTs. The study encompasses the moss Physcomitrella patens, a non-vascular land plant, while rice and Arabidopsis represent commelinid and non-commelinid seed plants. Analysis of the subset of GT-families particularly relevant to cell wall polysaccharide biosynthesis was complemented by a detailed analysis of S. moellendorffii cell walls. The S. moellendorffii cell wall contains many of the same components as seed plant cell walls, but appears to differ somewhat in its detailed architecture. The S. moellendorffii genome encodes fewer GTs (287 GTs including DUF266s) than the reference genomes. In a few families, notably GT51 and GT78, S. moellendorffii GTs have no higher plant orthologs, but in most families S. moellendorffii GTs have clear orthologies with Arabidopsis and rice. A gene naming convention of GTs is proposed which takes orthologies and GT-family membership into account. The evolutionary significance of apparently modern and ancient traits in S. moellendorffii is discussed, as is its use as a reference organism for functional annotation of GTs.

Collaboration


Dive into the Bent Larsen Petersen's collaboration.

Top Co-Authors

Avatar

Peter Ulvskov

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henrik Clausen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Jesper Harholt

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jack Egelund

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Naomi Geshi

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Søren Bak

University of Copenhagen

View shared research outputs
Researchain Logo
Decentralizing Knowledge