Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bernabé Linares-Barranco is active.

Publication


Featured researches published by Bernabé Linares-Barranco.


Frontiers in Neuroscience | 2011

Neuromorphic silicon neuron circuits

Giacomo Indiveri; Bernabé Linares-Barranco; Tara Julia Hamilton; André van Schaik; Ralph Etienne-Cummings; Tobi Delbruck; Shih-Chii Liu; Piotr Dudek; Philipp Häfliger; Sylvie Renaud; Johannes Schemmel; Gert Cauwenberghs; John V. Arthur; Kai Hynna; Fopefolu Folowosele; Sylvain Saïghi; Teresa Serrano-Gotarredona; Jayawan H. B. Wijekoon; Yingxue Wang; Kwabena Boahen

Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain–machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance-based Hodgkin–Huxley models to bi-dimensional generalized adaptive integrate and fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips.


Frontiers in Neuroscience | 2011

On spike-timing-dependent-plasticity, memristive devices, and building a self-learning visual cortex.

Carlos Zamarreño-Ramos; Luis A. Camuñas-Mesa; José Antonio Pérez-Carrasco; Timothée Masquelier; Teresa Serrano-Gotarredona; Bernabé Linares-Barranco

In this paper we present a very exciting overlap between emergent nanotechnology and neuroscience, which has been discovered by neuromorphic engineers. Specifically, we are linking one type of memristor nanotechnology devices to the biological synaptic update rule known as spike-time-dependent-plasticity (STDP) found in real biological synapses. Understanding this link allows neuromorphic engineers to develop circuit architectures that use this type of memristors to artificially emulate parts of the visual cortex. We focus on the type of memristors referred to as voltage or flux driven memristors and focus our discussions on a behavioral macro-model for such devices. The implementations result in fully asynchronous architectures with neurons sending their action potentials not only forward but also backward. One critical aspect is to use neurons that generate spikes of specific shapes. We will see how by changing the shapes of the neuron action potential spikes we can tune and manipulate the STDP learning rules for both excitatory and inhibitory synapses. We will see how neurons and memristors can be interconnected to achieve large scale spiking learning systems, that follow a type of multiplicative STDP learning rule. We will briefly extend the architectures to use three-terminal transistors with similar memristive behavior. We will illustrate how a V1 visual cortex layer can assembled and how it is capable of learning to extract orientations from visual data coming from a real artificial CMOS spiking retina observing real life scenes. Finally, we will discuss limitations of currently available memristors. The results presented are based on behavioral simulations and do not take into account non-idealities of devices and interconnects. The aim of this paper is to present, in a tutorial manner, an initial framework for the possible development of fully asynchronous STDP learning neuromorphic architectures exploiting two or three-terminal memristive type devices. All files used for the simulations are made available through the journal web site1.


IEEE Transactions on Neural Networks | 2009

CAVIAR: A 45k Neuron, 5M Synapse, 12G Connects/s AER Hardware Sensory–Processing– Learning–Actuating System for High-Speed Visual Object Recognition and Tracking

Rafael Serrano-Gotarredona; Matthias Oster; Patrick Lichtsteiner; Alejandro Linares-Barranco; Rafael Paz-Vicente; Francisco Gomez-Rodriguez; Luis A. Camuñas-Mesa; Raphael Berner; Manuel Rivas-Perez; Tobi Delbruck; Shih-Chii Liu; Rodney J. Douglas; Philipp Häfliger; Gabriel Jiménez-Moreno; Anton Civit Ballcels; Teresa Serrano-Gotarredona; Antonio Acosta-Jimenez; Bernabé Linares-Barranco

This paper describes CAVIAR, a massively parallel hardware implementation of a spike-based sensing-processing-learning-actuating system inspired by the physiology of the nervous system. CAVIAR uses the asynchronous address-event representation (AER) communication framework and was developed in the context of a European Union funded project. It has four custom mixed-signal AER chips, five custom digital AER interface components, 45 k neurons (spiking cells), up to 5 M synapses, performs 12 G synaptic operations per second, and achieves millisecond object recognition and tracking latencies.


Nanotechnology | 2013

Integration of nanoscale memristor synapses in neuromorphic computing architectures

Giacomo Indiveri; Bernabé Linares-Barranco; Robert A. Legenstein; George Deligeorgis; Themistoklis Prodromakis

Conventional neuro-computing architectures and artificial neural networks have often been developed with no or loose connections to neuroscience. As a consequence, they have largely ignored key features of biological neural processing systems, such as their extremely low-power consumption features or their ability to carry out robust and efficient computation using massively parallel arrays of limited precision, highly variable, and unreliable components. Recent developments in nano-technologies are making available extremely compact and low power, but also variable and unreliable solid-state devices that can potentially extend the offerings of availing CMOS technologies. In particular, memristors are regarded as a promising solution for modeling key features of biological synapses due to their nanoscale dimensions, their capacity to store multiple bits of information per element and the low energy required to write distinct states. In this paper, we first review the neuro- and neuromorphic computing approaches that can best exploit the properties of memristor and scale devices, and then propose a novel hybrid memristor-CMOS neuromorphic circuit which represents a radical departure from conventional neuro-computing approaches, as it uses memristors to directly emulate the biophysics and temporal dynamics of real synapses. We point out the differences between the use of memristors in conventional neuro-computing architectures and the hybrid memristor-CMOS circuit proposed, and argue how this circuit represents an ideal building block for implementing brain-inspired probabilistic computing paradigms that are robust to variability and fault tolerant by design.


Frontiers in Neuroscience | 2013

STDP and STDP variations with memristors for spiking neuromorphic learning systems

Teresa Serrano-Gotarredona; Timothée Masquelier; Themistoklis Prodromakis; Giacomo Indiveri; Bernabé Linares-Barranco

In this paper we review several ways of realizing asynchronous Spike-Timing-Dependent-Plasticity (STDP) using memristors as synapses. Our focus is on how to use individual memristors to implement synaptic weight multiplications, in a way such that it is not necessary to (a) introduce global synchronization and (b) to separate memristor learning phases from memristor performing phases. In the approaches described, neurons fire spikes asynchronously when they wish and memristive synapses perform computation and learn at their own pace, as it happens in biological neural systems. We distinguish between two different memristor physics, depending on whether they respond to the original “moving wall” or to the “filament creation and annihilation” models. Independent of the memristor physics, we discuss two different types of STDP rules that can be implemented with memristors: either the pure timing-based rule that takes into account the arrival time of the spikes from the pre- and the post-synaptic neurons, or a hybrid rule that takes into account only the timing of pre-synaptic spikes and the membrane potential and other state variables of the post-synaptic neuron. We show how to implement these rules in cross-bar architectures that comprise massive arrays of memristors, and we discuss applications for artificial vision.


IEEE Journal of Solid-state Circuits | 1989

Operational transconductance amplifier-based nonlinear function syntheses

Edgar Sánchez-Sinencio; J. Ramirez-Angulo; Bernabé Linares-Barranco; Ángel Rodríguez-Vázquez

It is shown that the operational transconductance amplifier, as the active element in basic building blocks, can be efficiently used for programmable nonlinear continuous-time function synthesis. Two efficient nonlinear function synthesis approaches are presented. The first approach is a rational approximation, and the second is a piecewise-linear approach. Test circuits have been fabricated using a 3- mu m p-well CMOS process. The flexibility of the designed and tested circuits was confirmed. >


IEEE Journal of Solid-state Circuits | 2003

On the design and characterization of femtoampere current-mode circuits

Bernabé Linares-Barranco; Teresa Serrano-Gotarredona

In this paper, we show and validate a reliable circuit design technique based on source voltage shifting for current-mode signal processing down to femtoamperes. The technique involves specific-current extractors and logarithmic current splitters for obtaining on-chip subpicoampere currents. It also uses a special on-chip sawtooth oscillator to monitor and measure currents down to a few femtoamperes. This way, subpicoampere currents are characterized without driving them off chip and requiring expensive instrumentation with complicated low leakage setups. A special current mirror is also introduced for reliably replicating such low currents. As an example, a simple log-domain first-order low-pass filter is implemented that uses a 100-fF capacitor and a 3.5-fA bias current to achieve a cutoff frequency of 0.5 Hz. A technique for characterizing noise at these currents is also described and verified. Finally, transistor mismatch measurements are provided and discussed. Experimental measurements are shown throughout the paper, obtained from prototypes fabricated in the AMS 0.35-/spl mu/m three-metal two-poly standard CMOS process.


IEEE Transactions on Circuits and Systems | 1990

On the design of voltage-controlled sinusoidal oscillators using OTAs

Ángel Rodríguez-Vázquez; Bernabé Linares-Barranco; J.L. Huertas; Edgar Sánchez-Sinencio

A unified systematic approach to the design of voltage-controlled oscillators using only operational transconductance amplifiers (OTAs) and capacitors is discussed. Two classical oscillator models, i.e. quadrature and bandpass-based, are employed to generate several oscillator structures. They are very appropriate for silicon monolithic implementations. The resulting oscillation frequencies are proportional to the transconductance of the OTA, and this makes the structures well-suited for building voltage controlled oscillators (VCOs). Amplitude stabilization circuits using both automatic gain control (AGC) mechanisms and limitation schemes are presented. The circuits are compatible with the transconductance amplifier capacitor oscillator (TACO). Experimental results from bipolar breadboard and CMOS IC prototypes showing the potential of OTA-based oscillators for high-frequency VCO operation are included. >


IEEE Journal of Solid-state Circuits | 1991

A CMOS implementation of FitzHugh-Nagumo neuron model

Bernabé Linares-Barranco; Edgar Sánchez-Sinencio; Ángel Rodríguez-Vázquez; J.L. Huertas

A CMOS circuit is proposed that emulates FitzHugh-Nagumos differential equations using OTAs, diode connected MOSFETs and capacitors. These equations model the fundamental behavior of biological neuron cells. Fitz-Hugh-Nagumos model is characterized by two threshold values. If the input to the neuron is between the two thresholds the output yields a sequence of firing pulses, if the input is outside this range, no output is observed. The resulting circuit due to the (voltage) programmability of the OTA allows one to easily vary parameters. Thus a large family of solutions can be obtained including the Van der Pols equation. Experimental results from a CMOS prototype are given that show the suitability of the technique used, and their potential for biological CMOS system emulation.


IEEE Transactions on Circuits and Systems | 2007

A Spatial Contrast Retina With On-Chip Calibration for Neuromorphic Spike-Based AER Vision Systems

Jesús Costas-Santos; Teresa Serrano-Gotarredona; Rafael Serrano-Gotarredona; Bernabé Linares-Barranco

We present a 32 times 32 pixels contrast retina microchip that provides its output as an address event representation (AER) stream. Spatial contrast is computed as the ratio between pixel photocurrent and a local average between neighboring pixels obtained with a diffuser network. This current-based computation produces an important amount of mismatch between neighboring pixels, because the currents can be as low as a few pico-amperes. Consequently, a compact calibration circuitry has been included to trimm each pixel. Measurements show a reduction in mismatch standard deviation from 57% to 6.6% (indoor light). The paper describes the design of the pixel with its spatial contrast computation and calibration sections. About one third of pixel area is used for a 5-bit calibration circuit. Area of pixel is 58 mum times 56 mum , while its current consumption is about 20 nA at 1-kHz event rate. Extensive experimental results are provided for a prototype fabricated in a standard 0.35-mum CMOS process.

Collaboration


Dive into the Bernabé Linares-Barranco's collaboration.

Top Co-Authors

Avatar

Teresa Serrano-Gotarredona

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.L. Huertas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Luis A. Camuñas-Mesa

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Rafael Serrano-Gotarredona

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos Zamarreño-Ramos

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge