Bernadette Breiden
University of Bonn
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bernadette Breiden.
Journal of Cell Biology | 2005
Céline Leyvraz; Roch-Philippe Charles; Isabelle Rubera; Marjorie Guitard; Samuel Rotman; Bernadette Breiden; Konrad Sandhoff; Edith Hummler
Serine proteases are proteolytic enzymes that are involved in the regulation of various physiological processes. We generated mice lacking the membrane-anchored channel-activating serine protease (CAP) 1 (also termed protease serine S1 family member 8 [Prss8] and prostasin) in skin, and these mice died within 60 h after birth. They presented a lower body weight and exhibited severe malformation of the stratum corneum (SC). This aberrant skin development was accompanied by an impaired skin barrier function, as evidenced by dehydration and skin permeability assay and transepidermal water loss measurements leading to rapid, fatal dehydration. Analysis of differentiation markers revealed no major alterations in CAP1/Prss8-deficient skin even though the epidermal deficiency of CAP1/Prss8 expression disturbs SC lipid composition, corneocyte morphogenesis, and the processing of profilaggrin. The examination of tight junction proteins revealed an absence of occludin, which did not prevent the diffusion of subcutaneously injected tracer (∼600 D) toward the skin surface. This study shows that CAP1/Prss8 expression in the epidermis is crucial for the epidermal permeability barrier and is, thereby, indispensable for postnatal survival.
Journal of Biological Chemistry | 2001
Klaus Ferlinz; Guido Kopal; Katussevani Bernardo; Thomas Linke; Julia Bär; Bernadette Breiden; Ulrich Neumann; Florian Lang; Edward H. Schuchman; Konrad Sandhoff
The biosynthesis of human acid ceramidase (hAC) starts with the expression of a single precursor polypeptide of ∼53–55 kDa, which is subsequently processed to the mature, heterodimeric enzyme (40 + 13 kDa) in the endosomes/lysosomes. Secretion of hAC by either fibroblasts or acid ceramidase cDNA-transfected COS cells is extraordinarily low. Both lysosomal targeting and endocytosis critically depend on a functional mannose 6-phosphate receptor as judged by the following criteria: (i) hAC-precursor secretion by NH4Cl-treated fibroblasts and I-cell disease fibroblasts, (ii) inhibition of the formation of mature heterodimeric hAC in NH4Cl-treated fibroblasts or in I-cell disease fibroblasts, and (iii) blocked endocytosis of hAC precursor by mannose 6-phosphate receptor-deficient fibroblasts or the addition of mannose 6-phosphate. The influence of the six individual potential N-glycosylation sites of human acid ceramidase on targeting, processing, and catalytic activity was determined by site-directed mutagenesis. Five glycosylation sites (sites 1–5 from the N terminus) are used. The elimination of sites 2, 4, and 6 has no influence on lysosomal processing or enzymatic activity of recombinant ceramidase. The removal of sites 1, 3, and 5 inhibits the formation of the heterodimeric enzyme form. None of the mutant ceramidases gave rise to an increased rate of secretion, suggesting that lysosomal targeting does not depend on one single carbohydrate chain.
Nature Cell Biology | 2007
Ralph Gareus; Marion Huth; Bernadette Breiden; Arianna Nenci; Nora Rösch; Ingo Haase; Wilhelm Bloch; Konrad Sandhoff; Manolis Pasparakis
The kinase IKK1 (also known as IKKα) was previously reported to regulate epidermal development and skeletal morphogenesis by acting in keratinocytes to induce their differentiation in an NF-κB independent manner. Here, we show that mice with epidermal keratinocyte-specific IKK1 ablation (hereafter referred to as IKK1EKO) develop a normally differentiated stratified epidermis, demonstrating that the function of IKK1 in inducing epidermal differentiation is not keratinocyte-autonomous. Despite normal epidermal stratification, the IKK1EKO mice display impaired epidermal-barrier function and increased transepidermal water loss, due to defects in stratum corneum lipid composition and in epidermal tight junctions. These defects are caused by the deregulation of retinoic acid target genes, encoding key lipid modifying enzymes and tight junction proteins, in the IKK1-deficient epidermis. Furthermore, we show that IKK1-deficient cells display impaired retinoic acid-induced gene transcription, and that IKK1 is recruited to the promoters of retinoic acid-regulated genes, suggesting that one mechanism by which IKK1 controls epidermal-barrier formation is by regulating the expression of retinoic acid receptor target genes in keratinocytes.
The Journal of Neuroscience | 2011
Irfan Y. Tamboli; Heike Hampel; Nguyen T. Tien; Karen Tolksdorf; Bernadette Breiden; Paul M. Mathews; Paul Saftig; Konrad Sandhoff; Jochen Walter
Deposition of amyloid β peptides (Aβs) in extracellular amyloid plaques within the human brain is a hallmark of Alzheimers disease (AD). Aβ derives from proteolytic processing of the amyloid precursor protein (APP) by β- and γ-secretases. The initial cleavage by β-secretase results in shedding of the APP ectodomain and generation of APP C-terminal fragments (APP-CTFs), which can then be further processed within the transmembrane domain by γ-secretase, resulting in release of Aβ. Here, we demonstrate that accumulation of sphingolipids (SLs), as occurs in lysosomal lipid storage disorders (LSDs), decreases the lysosome-dependent degradation of APP-CTFs and stimulates γ-secretase activity. Together, this results in increased generation of both intracellular and secreted Aβ. Notably, primary fibroblasts from patients with different SL storage diseases show strong accumulation of potentially amyloidogenic APP-CTFs. By using biochemical, cell biological, and genetic approaches, we demonstrate that SL accumulation affects autophagic flux and impairs the clearance of APP-CTFs. Thus, accumulation of SLs might not only underlie the pathogenesis of LSDs, but also trigger increased generation of Aβ and contribute to neurodegeneration in sporadic AD.
The EMBO Journal | 2009
Reinhard Bauer; André Voelzmann; Bernadette Breiden; Ute Schepers; Hany Farwanah; Ines Hahn; Franka Eckardt; Konrad Sandhoff; Michael Hoch
Ceramide synthases are highly conserved transmembrane proteins involved in the biosynthesis of sphingolipids, which are essential structural components of eukaryotic membranes and can act as second messengers regulating tissue homeostasis. However, the role of these enzymes in development is poorly understood due to the lack of animal models. We identified schlank as a new Drosophila member of the ceramide synthase family. We demonstrate that schlank is involved in the de novo synthesis of a broad range of ceramides, the key metabolites of sphingolipid biosynthesis. Unexpectedly, schlank mutants also show reduction of storage fat, which is deposited as triacylglyerols in the fat body. We found that schlank can positively regulate fatty acid synthesis by promoting the expression of sterol‐responsive element‐binding protein (SREBP) and SREBP‐target genes. It further prevents lipolysis by downregulating the expression of triacylglycerol lipase. Our results identify schlank as a new regulator of the balance between lipogenesis and lipolysis in Drosophila. Furthermore, our studies of schlank and the mammalian Lass2 family member suggest a novel role for ceramide synthases in regulating body fat metabolism.
Nature Communications | 2011
Simona Frateschi; Eric Camerer; Giovanna Crisante; Sarah Rieser; Mathieu Membrez; Roch-Philippe Charles; Friedrich Beermann; Jean-Christophe Stehle; Bernadette Breiden; Konrad Sandhoff; Samuel Rotman; Marek Haftek; Anne Wilson; Stephan Ryser; Martin Steinhoff; Shaun R. Coughlin; Edith Hummler
Altered serine protease activity is associated with skin disorders in humans and in mice. The serine protease channel-activating protease-1 (CAP1; also termed protease serine S1 family member 8 (Prss8)) is important for epidermal homeostasis and is thus indispensable for postnatal survival in mice, but its roles and effectors in skin pathology are poorly defined. In this paper, we report that transgenic expression in mouse skin of either CAP1/Prss8 (K14-CAP1/Prss8) or protease-activated receptor-2 (PAR2; Grhl3PAR2/+), one candidate downstream target, causes epidermal hyperplasia, ichthyosis and itching. K14-CAP1/Prss8 ectopic expression impairs epidermal barrier function and causes skin inflammation characterized by an increase in thymic stromal lymphopoietin levels and immune cell infiltrations. Strikingly, both gross and functional K14-CAP1/Prss8-induced phenotypes are completely negated when superimposed on a PAR2-null background, establishing PAR2 as a pivotal mediator of pathogenesis. Our data provide genetic evidence for PAR2 as a downstream effector of CAP1/Prss8 in a signalling cascade that may provide novel therapeutic targets for ichthyoses, pruritus and inflammatory skin diseases.
Biological Chemistry | 2007
Jonathan O. Babalola; Michaela Wendeler; Bernadette Breiden; Christoph Arenz; Guenter Schwarzmann; Silvia Locatelli-Hoops; Konrad Sandhoff
Abstract Niemann-Pick type C disease is an inherited fatal disorder characterized by the accumulation of unesterified cholesterol and other lipids in the endosomal/lysosomal compartment. Two independent genes responsible for this neurodegenerative disorder have been identified, but the precise functions of the encoded Niemann-Pick C1 (NPC1) and C2 (NPC2) proteins are not yet known. We developed a cell-free assay for measuring intermembrane lipid transport and examined the ability of bovine NPC2 (bNPC2) for intermembrane cholesterol transfer. NPC2 specifically extracts cholesterol from phospholipid bilayers and catalyzes intermembrane transfer to acceptor vesicles in a dose- and time-dependent manner. This transfer activity is dependent on temperature, pH, ionic strength, lipid composition of the model membranes, and the ratio of donor to acceptor vesicles. In model membranes, the presence of the lysosomal anionic phospholipids bis(monooleoylglycero)phosphate and phosphatidyl inositol significantly stimulated cholesterol transfer by NPC2, whereas bis(monomyristoylglycero)phosphate, phosphatidyl serine, and phosphatidic acid had no effect. Moreover, ceramide stimulated cholesterol transfer slightly, whereas sphingomyelin reduced cholesterol transfer rates. With our assay system we identified for the first time the ability of other lysosomal proteins, most notably the GM2-activator protein, to mediate intermembrane cholesterol transfer. This assay system promises to be a valuable tool for further quantitative and mechanistic studies of protein-mediated lipid transfer.
Journal of Biological Chemistry | 2006
Silvia Locatelli-Hoops; Natascha Remmel; Ralf Klingenstein; Bernadette Breiden; Maksim Rossocha; Maike Schoeniger; Christine Koenigs; Wolfram Saenger; Konrad Sandhoff
Saposin A (Sap-A) is one of five known sphingolipid activator proteins required for the lysosomal degradation of sphingolipids and for the loading of lipid antigens onto antigen-presenting molecules of the CD1 type. Sap-A assists in the degradation of galactosylceramide by galactosylceramide-β-galactosidase in vivo, which takes place at the surface of intraendosomal/intralysosomal vesicles. Sap-A is believed to mediate the interaction between the enzyme and its membrane-bound substrate. Its dysfunction causes a variant form of Krabbe disease. In the present study we prepared glycosylated Sap-A free of other Saps, taking advantage of the Pichia pastoris expression system. Using liposomes and surface plasmon resonance spectroscopy, we tested the binding and lipid mobilization capacity of Sap-A under different conditions. Along the endocytic pathway, the pH value decreases, and the lipid composition of intraendosomal and intralysosomal membranes changes drastically. In the inner membranes the cholesterol concentration decreases, and that of the anionic phospholipid bis(monoacylglycero)phosphate increases. Here, we show that Sap-A is able to bind to liposomes and to mobilize lipids out of them at acidic pH values below pH 4.7. Low cholesterol levels and increasing concentrations of bis(monoacylglycero)phosphate favor lipid extraction significantly. Galactosylceramide as a bilayer component is not essential for lipid mobilization by Sap-A, which requires intact disulfide bridges for activity. We also show for the first time that glycosylation of Sap-A is essential for its lipid extraction activity. Variant Sap-A proteins, which cause storage of galactosylceramide in humans (Krabbe disease, Spiegel, R., Bach, G., Sury, V., Mengistu, G., Meidan, B., Shalev, S., Shneor, Y., Mandel, H., and Zeigler, M. (2005) Mol. Genet. Metab. 84, 160–166) and in mutant mice (Matsuda, J., Vanier, M. T., Saito, Y., Tohyama, J., and Suzuki, K. (2001) Hum. Mol. Genet. 10, 1191–1199) are deficient in lipid extraction capacity.
Journal of Cellular and Molecular Medicine | 2011
Alexander Schneede; Christine K. Schmidt; Maarit Hölttä-Vuori; Jörg Heeren; Marion Willenborg; Judith Blanz; Mykola Domanskyy; Bernadette Breiden; Susanne Brodesser; Jobst Landgrebe; Konrad Sandhoff; Elina Ikonen; Paul Saftig; Eeva-Liisa Eskelinen
The mechanisms of endosomal and lysosomal cholesterol traffic are still poorly understood. We showed previously that unesterified cholesterol accumulates in the late endosomes and lysosomes of fibroblasts deficient in both lysosome associated membrane protein‐2 (LAMP‐2) and LAMP‐1, two abundant membrane proteins of late endosomes and lysosomes. In this study we show that in cells deficient in both LAMP‐1 and LAMP‐2 (LAMP−/−), low‐density lipoprotein (LDL) receptor levels and LDL uptake are increased as compared to wild‐type cells. However, there is a defect in esterification of both endogenous and LDL cholesterol. These results suggest that LAMP−/− cells have a defect in cholesterol transport to the site of esterification in the endoplasmic reticulum, likely due to defective export of cholesterol out of late endosomes or lysosomes. We also show that cholesterol accumulates in LAMP‐2 deficient liver and that overexpression of LAMP‐2 retards the lysosomal cholesterol accumulation induced by U18666A. These results point to a critical role for LAMP‐2 in endosomal/lysosomal cholesterol export. Moreover, the late endosomal/lysosomal cholesterol accumulation in LAMP−/− cells was diminished by overexpression of any of the three isoforms of LAMP‐2, but not by LAMP‐1. The LAMP‐2 luminal domain, the membrane‐proximal half in particular, was necessary and sufficient for the rescue effect. Taken together, our results suggest that LAMP‐2, its luminal domain in particular, plays a critical role in endosomal cholesterol transport and that this is distinct from the chaperone‐mediated autophagy function of LAMP‐2.
Journal of Lipid Research | 2010
Misbaudeen Abdul-Hammed; Bernadette Breiden; Matthew A. Adebayo; Jonathan O. Babalola; Guenter Schwarzmann; Konrad Sandhoff
We examined the effect of Niemann-Pick disease type 2 (NPC2) protein and some late endosomal lipids [sphingomyelin, ceramide and bis(monoacylglycero)phosphate (BMP)] on cholesterol transfer and membrane fusion. Of all lipid-binding proteins tested, only NPC2 transferred cholesterol at a substantial rate, with no transfer of ceramide, GM3, galactosylceramide, sulfatide, phosphatidylethanolamine, or phosphatidylserine. Cholesterol transfer was greatly stimulated by BMP, little by ceramide, and strongly inhibited by sphingomyelin. Cholesterol and ceramide were also significantly transferred in the absence of protein. This spontaneous transfer of cholesterol was greatly enhanced by ceramide, slightly by BMP, and strongly inhibited by sphingomyelin. In our transfer assay, biotinylated donor liposomes were separated from fluorescent acceptor liposomes by streptavidin-coated magnetic beads. Thus, the loss of fluorescence indicated membrane fusion. Ceramide induced spontaneous fusion of lipid vesicles even at very low concentrations, while BMP and sphingomyelin did so at about 20 mol% and 10 mol% concentrations, respectively. In addition to transfer of cholesterol, NPC2 induced membrane fusion, although less than saposin-C. In this process, BMP and ceramide had a strong and mild stimulating effect, and sphingomyelin an inhibiting effect, respectively. Note that the effects of the lipids on cholesterol transfer mediated by NPC2 were similar to their effect on membrane fusion induced by NPC2 and saposin-C.