Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bernard Kloareg is active.

Publication


Featured researches published by Bernard Kloareg.


Nature | 2010

The Ectocarpus genome and the independent evolution of multicellularity in brown algae

J. Mark Cock; Lieven Sterck; Pierre Rouzé; Delphine Scornet; Andrew E. Allen; Grigoris D. Amoutzias; Véronique Anthouard; François Artiguenave; Jean-Marc Aury; Jonathan H. Badger; Bank Beszteri; Kenny Billiau; Eric Bonnet; John H. Bothwell; Chris Bowler; Catherine Boyen; Colin Brownlee; Carl J. Carrano; Bénédicte Charrier; Ga Youn Cho; Susana M. Coelho; Jonas Collén; Erwan Corre; Corinne Da Silva; Ludovic Delage; Nicolas Delaroque; Simon M. Dittami; Sylvie Doulbeau; Marek Eliáš; Garry Farnham

Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related. These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1). We report the 214u2009million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae, closely related to the kelps (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The Ectocarpus genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic approaches to explore these and other aspects of brown algal biology further.


Annual Review of Plant Biology | 2011

Evolution and Diversity of Plant Cell Walls: From Algae to Flowering Plants

Zoë A. Popper; Dagmar B. Stengel; David S. Domozych; Bernard Kloareg; Maria G. Tuohy; William G. T. Willats; Michel Gurvan; Cécile Hervé

All photosynthetic multicellular Eukaryotes, including land plants and algae, have cells that are surrounded by a dynamic, complex, carbohydrate-rich cell wall. The cell wall exerts considerable biological and biomechanical control over individual cells and organisms, thus playing a key role in their environmental interactions. This has resulted in compositional variation that is dependent on developmental stage, cell type, and season. Further variation is evident that has a phylogenetic basis. Plants and algae have a complex phylogenetic history, including acquisition of genes responsible for carbohydrate synthesis and modification through a series of primary (leading to red algae, green algae, and land plants) and secondary (generating brown algae, diatoms, and dinoflagellates) endosymbiotic events. Therefore, organisms that have the shared features of photosynthesis and possession of a cell wall do not form a monophyletic group. Yet they contain some common wall components that can be explained increasingly by genetic and biochemical evidence.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida

Jonas Collén; Betina M. Porcel; Wilfrid Carré; Steven G. Ball; Cristian Chaparro; Thierry Tonon; Tristan Barbeyron; Gurvan Michel; Benjamin Noel; Klaus Valentin; Marek Eliáš; François Artiguenave; Alok Arun; Jean-Marc Aury; Jose Fernandes Barbosa-Neto; John H. Bothwell; François-Yves Bouget; Loraine Brillet; Francisco Cabello-Hurtado; Salvador Capella-Gutiérrez; Bénédicte Charrier; Lionel Cladière; J. Mark Cock; Susana M. Coelho; Christophe Colleoni; Mirjam Czjzek; Corinne Da Silva; Ludovic Delage; Philippe Deschamps; Simon M. Dittami

Red seaweeds are key components of coastal ecosystems and are economically important as food and as a source of gelling agents, but their genes and genomes have received little attention. Here we report the sequencing of the 105-Mbp genome of the florideophyte Chondrus crispus (Irish moss) and the annotation of the 9,606 genes. The genome features an unusual structure characterized by gene-dense regions surrounded by repeat-rich regions dominated by transposable elements. Despite its fairly large size, this genome shows features typical of compact genomes, e.g., on average only 0.3 introns per gene, short introns, low median distance between genes, small gene families, and no indication of large-scale genome duplication. The genome also gives insights into the metabolism of marine red algae and adaptations to the marine environment, including genes related to halogen metabolism, oxylipins, and multicellularity (microRNA processing and transcription factors). Particularly interesting are features related to carbohydrate metabolism, which include a minimalistic gene set for starch biosynthesis, the presence of cellulose synthases acquired before the primary endosymbiosis showing the polyphyly of cellulose synthesis in Archaeplastida, and cellulases absent in terrestrial plants as well as the occurrence of a mannosylglycerate synthase potentially originating from a marine bacterium. To explain the observations on genome structure and gene content, we propose an evolutionary scenario involving an ancestral red alga that was driven by early ecological forces to lose genes, introns, and intergenetic DNA; this loss was followed by an expansion of genome size as a consequence of activity of transposable elements.


Protoplasma | 1993

Quantification of nuclear DNA and G-C content in marine macroalgae by flow cytometry of isolated nuclei

Y. Le Gall; Spencer C. Brown; Dominique Marie; Meftaha Mejjad; Bernard Kloareg

SummaryThe amounts of nuclear DNA in ten species of seaweeds belonging to the Rhodophyceae, Phaeophyceae, and Chlorophyceae were determined by flow cytometric analysis of nuclei isolated from protoplasts. Genome size was determined from the fluorescence of the nuclei stained with ethidium bromide. The size of the nuclear genome ranged from 0.13 pg per cell in the 1 C population ofUlva rigida to 3.40 pg per cell in the 2 C population ofSphacelaria sp. GC% analysis was based on staining with either Hoechst 33342 or mithramycin A, two fluorochromes specific for the bases A-T and G-C, respectively. Two models were used for the estimation of the proportion of guanine plus cytosine in the nuclear genome. The first one was based on the linear relationships mithramycin A fluorescence/G-C content and ethidium bromide fluorescence/total DNA content. The second model, based on the curvilinear relationships Hoechst 33342 fluorescence/A-T content and mithramycin A fluorescence/G-C content, resulted in comparatively more homogenous and consistent data and appears more accurate. Comparison with previous reports from other methods for the physical investigation of nuclear genomes shows that flow cytometry of nuclei isolated from protoplasts is an accurate, convenient and robust technique to assay for genome sizes and base pair composition in marine macroalgae.


Plant and Cell Physiology | 2009

Free Fatty Acids and Methyl Jasmonate Trigger Defense Reactions in Laminaria digitata

Frithjof C. Küpper; Emmanuel Gaquerel; Audrey Cosse; Fadi Adas; Akira F. Peters; Dieter G. Müller; Bernard Kloareg; Jean-Pierre Salaün; Philippe Potin

Arachidonic acid, linolenic acid and methyl jasmonate (MeJA) were found to be strong triggers of an oxidative burst in the kelp Laminaria digitata. These findings constitute the first report of an oxidative burst in an algal system induced by free fatty acids. The source of reactive oxygen species can be at least partially inhibited by diphenylene iodonium (DPI). Treatment with arachidonic acid increases the levels of a number of free fatty acids [including myristic (C14:0), linoleic (C18:2), linolenic (C18:3) and eicosapentaeneoic (C20:5) acids] and hydroxylated derivatives [such as 15-hydroxyeicosatetraenoic acid (15-HETE), 13-hydroxyoctadecatrienoic acid (13-HOTE) and 15-hydroxyeicosapentaenoic acid (15-HEPE)]. Similar to a previous report of the function of an alginate oligosaccharide-triggered oxidative burst in the establishment of resistance in L. digitata against infection by its brown algal endophyte Laminariocolax tomentosoides, C20:4- and MeJA-induced oxidative bursts seem to be involved in establishing the same protection in L. digitata. Altogether, this study supports the notion that lipid oxidation signaling plays a key role in defense induction in marine brown algae.


Annals of Botany | 2014

Chemical and enzymatic fractionation of cell walls from Fucales: insights into the structure of the extracellular matrix of brown algae.

Estelle Deniaud-Bouët; Nelly Kervarec; Gurvan Michel; Thierry Tonon; Bernard Kloareg; Cécile Hervé

BACKGROUND AND AIMSnBrown algae are photosynthetic multicellular marine organisms evolutionarily distant from land plants, with a distinctive cell wall. They feature carbohydrates shared with plants (cellulose), animals (fucose-containing sulfated polysaccharides, FCSPs) or bacteria (alginates). How these components are organized into a three-dimensional extracellular matrix (ECM) still remains unclear. Recent molecular analysis of the corresponding biosynthetic routes points toward a complex evolutionary history that shaped the ECM structure in brown algae.nnnMETHODSnExhaustive sequential extractions and composition analyses of cell wall material from various brown algae of the order Fucales were performed. Dedicated enzymatic degradations were used to release and identify cell wall partners. This approach was complemented by systematic chromatographic analysis to study polymer interlinks further. An additional structural assessment of the sulfated fucan extracted from Himanthalia elongata was made.nnnKEY RESULTSnThe data indicate that FCSPs are tightly associated with proteins and cellulose within the walls. Alginates are associated with most phenolic compounds. The sulfated fucans from H. elongata were shown to have a regular α-(1→3) backbone structure, while an alternating α-(1→3), (1→4) structure has been described in some brown algae from the order Fucales.nnnCONCLUSIONSnThe data provide a global snapshot of the cell wall architecture in brown algae, and contribute to the understanding of the structure-function relationships of the main cell wall components. Enzymatic cross-linking of alginates by phenols may regulate the strengthening of the wall, and sulfated polysaccharides may play a key role in the adaptation to osmotic stress. The emergence and evolution of ECM components is further discussed in relation to the evolution of multicellularity in brown algae.


Marine Biotechnology | 2006

Isolation and Culture of a Marine Bacterium Degrading the Sulfated Fucans from Marine Brown Algae

Valérie Descamps; Sébastien Colin; Marc Lahaye; Murielle Jam; Christophe Richard; Philippe Potin; Tristan Barbeyron; Jean-Claude Yvin; Bernard Kloareg

Fucoidans are matrix polysaccharides from marine brown algae, consisting of an α-l-fucose backbone substituted by sulfate-ester groups and masked with ramifications containing other monosaccharide residues. In spite of their interest as biologically active compounds in a number of homologous and heterologous systems, no convenient sources with fucanase activity are available yet for the degradation of the fucalean algae. We here report on the isolation, characterization, and culture conditions of a bacterial strain capable of degrading various brown algal fucoidans. This bacterium, a member of the family Flavobacteriaceae, was shown to secrete fucoidan endo-hydrolase activity. An extracellular enzyme preparation was used to degrade the fucoidan from the brown alga Pelvetia canaliculata. End products included a tetrasaccharide and a hexasaccharide made of the repetition of disaccharidic units consisting of α-1→3-l-fucopyranose-2-sulfate-α-1→4-l-fucopyranose-2,3-disulfate, with the 3-linked residues at the nonreducing end.


Journal of Phycology | 2007

Spore release in Acrochaetium sp. (Rhodophyta) is bacterially controlled

Florian Weinberger; Jessica Beltrán; Juan A. Correa; Ulrich Lion; Georg Pohnert; Naresh Kumar; Peter D. Steinberg; Bernard Kloareg; Philippe Potin

The facultative red algal epiphyte Acrochaetium sp. liberated spores preferentially and recruited more successfully in laboratory cultures when its host Gracilaria chilensis C. J. Bird, McLachlan et E. C. Oliveira was present. The same effect was also induced by cell‐free medium from G. chilensis, suggesting it contained a molecular signal. Antibiotics prevented spore release in Acrochaetium sp., even when G. chilensis was present, suggesting a prokaryotic origin of the signal. Simultaneous application of N‐butyl‐homoserine‐lactone (BHL) restored the spore‐release capacity, which demonstrated that spore release was not directly inhibited by the antibiotics and indicated that bacterially generated N‐acyl‐homoserine‐lactones (AHLs) regulate spore release. An involvement of AHL was further indicated by the fact that two different halofuranone inhibitors of AHL receptors also inhibited spore release when they were applied at relatively low concentrations. Of seven different AHLs tested, only BHL induced the effect. However, BHL was only active at relatively high concentrations (100u2003μM), and it was not detected in spore‐release‐inducing medium of G. chilensis. Another water‐soluble AHL or an AHL structure analog is therefore probably the active compound in G. chilensis cultures. The data presented demonstrate that life cycle completion in Acrochaetium sp. strongly depends on bacteria, which are not always present in sufficient numbers on the alga itself. Exogenous bacteria that are associated with G. chilensis or with other potential substrates may therefore trigger timely spore liberation in Acrochaetium sp., provided that the necessary concentration of AHL is reached. This first finding of AHL perception in a red alga confirms that AHL signalling is more widespread among eukaryotes than was thought until recently. However, spore release of a second red alga, Sahlingia subintegra (Rosenv.) Kornmann, was unaffected by AHL, and the reaction observed is therefore not universal.


Current Genetics | 1997

ORIGIN AND EVOLUTION OF MITOCHONDRIA : WHAT HAVE WE LEARNT FROM RED ALGAE?

Catherine Leblanc; O. Richard; Bernard Kloareg; Susanne Viehmann; Klaus Zetsche; Catherine Boyen

Abstract The purpose of this review is to present an account of our current understanding of the structure, organization and evolution of mitochondrial genomes, and to discuss the origin and evolution of mitochondria from the perspective recently provided by the extensive sequenc-ing of various mitochondrial genomes. Mitochondrial-en-coded protein phylogenies are congruent with nuclear phylogenies and strongly support a monophyletic origin of mitochondria. The newly available data from red-algal mitochondrial genomes, in particular, show that the structural and functional diversity of mitochondrial genomes can be accounted for by paralogous evolution. We also discuss the influence of other constraints, such as uniparental inheritance, on the evolution of genome organization in mitochondria.


Molecular Ecology | 1998

Isolation and characterization of microsatellite markers in the nuclear genome of the brown alga Laminaria digitata (Phaeophyceae)

C. Billot; Sylvie Rousvoal; Arnaud Estoup; Jörg T. Epplen; Pierre Saumitou-Laprade; M. Valero; Bernard Kloareg

© 1998 Blackwell Science Ltd, Molecular Ecology, 7, 1771Ð1788 Table 2 Cross-specific amplification of Mustelid primers. Size range of PCR product for each locus amplified in each species is given in base pairs. Numbers in parentheses indicate the number of alleles observed in N = 3 individuals of each species. PCR reactions resulting in no product are indicated by Ð, while PCR reactions producing multibanding patterns are denoted by . Locus GG-14 amplifies two microsatellite loci in otter (Lontra canadensis) and marten (Martes americana)

Collaboration


Dive into the Bernard Kloareg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Claude Yvin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tristan Barbeyron

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ludovic Delage

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olivier Klarzynski

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge