Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bernard N. Kanoi is active.

Publication


Featured researches published by Bernard N. Kanoi.


American Journal of Tropical Medicine and Hygiene | 2011

Continuing Intense Malaria Transmission in Northern Uganda

Carla Proietti; Davide D. Pettinato; Bernard N. Kanoi; Edward H. Ntege; Andrea Crisanti; Eleanor M. Riley; Thomas G. Egwang; Chris Drakeley; Teun Bousema

Recent reports of reductions in malaria transmission in several African countries have resulted in optimism that malaria can be eliminated in parts of Africa where it is currently endemic. It is not known whether these trends are global or whether they are also present in areas where political instability has hindered effective malaria control. We determined malaria parasite carriage and age-dependent antibody responses to Plasmodium falciparum antigens in cross-sectional surveys in Apac, northern Uganda that was affected by political unrest. Under-five parasite prevalence was 55.8% (115/206) by microscopy and 71.9% (41/57) by polymerase chain reaction. Plasmodium ovale alone, or as a co-infection, was detected in 8.6% (12/139) and Plasmodium malariae in 4.3% (6/139) of the infections. Age seroprevalence curves gave no indication of recent changes in malaria transmission intensity. Malaria control remains a tremendous challenge in areas that have not benefited from large-scale interventions, illustrated here by the district of Apac.


PLOS ONE | 2013

Phase 1b randomized trial and follow-up study in Uganda of the blood-stage malaria vaccine candidate BK-SE36.

Nirianne Marie Q. Palacpac; Edward H. Ntege; Adoke Yeka; Betty Balikagala; Nahoko Suzuki; Hiroki Shirai; Masanori Yagi; Kazuya Ito; Wakaba Fukushima; Yoshio Hirota; Christopher Nsereko; Takuya Okada; Bernard N. Kanoi; Kohhei Tetsutani; Nobuko Arisue; Sawako Itagaki; Takahiro Tougan; Ken J. Ishii; Shigeharu Ueda; Thomas G. Egwang; Toshihiro Horii

Background Up to now a malaria vaccine remains elusive. The Plasmodium falciparum serine repeat antigen-5 formulated with aluminum hydroxyl gel (BK-SE36) is a blood-stage malaria vaccine candidate that has undergone phase 1a trial in malaria-naive Japanese adults. We have now assessed the safety and immunogenicity of BK-SE36 in a malaria endemic area in Northern Uganda. Methods We performed a two-stage, randomized, single-blinded, placebo-controlled phase 1b trial (Current Controlled trials ISRCTN71619711). A computer-generated sequence randomized healthy subjects for 2 subcutaneous injections at 21-day intervals in Stage1 (21–40 year-olds) to 1-mL BK-SE36 (BKSE1.0) (n = 36) or saline (n = 20) and in Stage2 (6–20 year-olds) to BKSE1.0 (n = 33), 0.5-mL BK-SE36 (BKSE0.5) (n = 33), or saline (n = 18). Subjects and laboratory personnel were blinded. Safety and antibody responses 21-days post-second vaccination (Day42) were assessed. Post-trial, to compare the risk of malaria episodes 130–365 days post-second vaccination, Stage2 subjects were age-matched to 50 control individuals. Results Nearly all subjects who received BK-SE36 had induration (Stage1, n = 33, 92%; Stage2, n = 63, 96%) as a local adverse event. No serious adverse event related to BK-SE36 was reported. Pre-existing anti-SE36 antibody titers negatively correlated with vaccination-induced antibody response. At Day42, change in antibody titers was significant for seronegative adults (1.95-fold higher than baseline [95% CI, 1.56–2.43], p = 0.004) and 6–10 year-olds (5.71-fold [95% CI, 2.38–13.72], p = 0.002) vaccinated with BKSE1.0. Immunogenicity response to BKSE0.5 was low and not significant (1.55-fold [95% CI, 1.24–1.94], p = 0.75). In the ancillary analysis, cumulative incidence of first malaria episodes with ≥5000 parasites/µL was 7 cases/33 subjects in BKSE1.0 and 10 cases/33 subjects in BKSE0.5 vs. 29 cases/66 subjects in the control group. Risk ratio for BKSE1.0 was 0.48 (95% CI, 0.24–0.98; p = 0.04). Conclusion BK-SE36 is safe and immunogenic. The promising potential of BK-SE36, observed in the follow-up study, warrants a double-blind phase 1/2b trial in children under 5 years. Trial Registration Controlled-Trials.com ISRCTN71619711 ISRCTN71619711


Parasite Immunology | 2013

Influence of infection on malaria-specific antibody dynamics in a cohort exposed to intense malaria transmission in northern Uganda

Carla Proietti; Federica Verra; Michael T. Bretscher; Will Stone; Bernard N. Kanoi; B. Balikagala; Thomas G. Egwang; Patrick H. Corran; R. Ronca; Bruno Arcà; Eleanor M. Riley; Andrea Crisanti; Chris Drakeley; Teun Bousema

The role of submicroscopic infections in modulating malaria antibody responses is poorly understood and requires longitudinal studies. A cohort of 249 children ≤5 years of age, 126 children between 6 and 10 years and 134 adults ≥20 years was recruited in an area of intense malaria transmission in Apac, Uganda and treated with artemether/lumefantrine at enrolment. Parasite carriage was determined at enrolment and after 6 and 16 weeks using microscopy and PCR. Antibody prevalence and titres to circumsporozoite protein, apical membrane antigen‐1 (AMA‐1), merozoite surface protein‐1 (MSP‐119), merozoite surface protein‐2 (MSP‐2) and Anopheles gambiae salivary gland protein 6 (gSG6) were determined by ELISA. Plasmodium falciparum infections were detected in 38·1% (194/509) of the individuals by microscopy and in 57·1% (284/493) of the individuals by PCR at enrolment. Antibody prevalence and titre against AMA‐1, MSP‐119, MSP‐2 and gSG6 were related to concurrent (sub‐)microscopic parasitaemia. Responses were stable in children who were continuously infected with malaria parasites but declined in children who were never parasitaemic during the study or were not re‐infected after treatment. These findings indicate that continued malaria infections are required to maintain antibody titres in an area of intense malaria transmission.


Current Opinion in Infectious Diseases | 2007

New concepts in vaccine development in malaria.

Bernard N. Kanoi; Thomas G. Egwang

Purpose of review To focus on recent novel concepts in the development of malaria vaccines. Recent findings There is a renewed interest in whole attenuated sporozoite vaccines, either as irradiated or genetically modified sporozoites, because they consistently elicit solid protection against challenge infections. Enthusiasm about these vaccines is, however, tempered by technical, logistical, safety and even cultural hurdles that might need to be surmounted. Less than a score of Plasmodium falciparum proteins are currently in the development pipeline as malaria vaccines. There is an urgent need to ratchet up the process of candidate vaccine discovery, and reverse vaccinology and genome-wide surveys remain promising strategies. The development of malaria vaccines for placental malaria is an active area and chondroitin sulfate A-binding epitopes of the variant PfEMP1 have been identified. Live bacteria and viral vectors hold special promise for vaccine delivery. Summary Attenuated sporozoite vaccines have made a resurgence to center stage in malaria vaccine development. There is an urgent need to identify more subunit vaccine candidates that can enter into the development pipeline, identify surrogate markers of immunity and design vaccines which induce long-lasting immunity.


Vaccine | 2017

Antibody profiles to wheat germ cell-free system synthesized Plasmodium falciparum proteins correlate with protection from symptomatic malaria in Uganda.

Bernard N. Kanoi; Eizo Takashima; Masayuki Morita; Michael T. White; Nirianne Marie Q. Palacpac; Edward H. Ntege; Betty Balikagala; Adoke Yeka; Thomas G. Egwang; Toshihiro Horii; Takafumi Tsuboi

The key targets of protective antibodies against Plasmodium falciparum remain largely unknown. In this study, we determined immunoreactivity to 1827 recombinant proteins derived from 1565 genes representing ∼30% of the entire P. falciparum genome, for identification of novel malaria vaccine candidates. The recombinant proteins were expressed by wheat germ cell-free system, a platform that can synthesize quality plasmodial proteins that elicit biologically active antibodies in animals. Sera were obtained from indigenous residents of a malaria endemic region in Northern Uganda who were enrolled at the start of a rainy season and prospectively monitored for symptomatic malaria episodes for a year. Immunoreactivity to sera was determined by AlphaScreen; a homogeneous high-throughput system that detects protein interactions. Our analysis revealed antibody responses to 128 proteins that significantly associated with protection from symptomatic malaria. From 128 proteins, 53 were down-selected as the most plausible targets of host protective immune response by virtue of having a predicted signal peptide and/or transmembrane domain(s), or confirmed localization on the parasite surface. The 53 proteins comprised of not only previously characterized vaccine candidates but also uncharacterized proteins. Proteins involved in erythrocyte invasion; RON4, RON2 and CLAG3.1 and pre-erythrocytic proteins; SIAP-2, TRAP and CelTOS, were recommended for prioritization for further evaluation as vaccine candidates. The findings clearly demonstrate that generation of the protein library using the wheat germ cell-free system coupled with high throughput immunoscreening with AlphaScreen offers new options for rational discovery and selection of potential malaria vaccine candidates.


Scientific Reports | 2018

PV1, a novel Plasmodium falciparum merozoite dense granule protein, interacts with exported protein in infected erythrocytes

Masayuki Morita; Hikaru Nagaoka; Edward H. Ntege; Bernard N. Kanoi; Daisuke Ito; Takahiro Nakata; Ji-Won Lee; Kazuaki Tokunaga; Tadahiro Iimura; Motomi Torii; Takafumi Tsuboi; Eizo Takashima

Upon invasion, Plasmodium falciparum exports hundreds of proteins across its surrounding parasitophorous vacuole membrane (PVM) to remodel the infected erythrocyte. Although this phenomenon is crucial for the parasite growth and virulence, elucidation of precise steps in the export pathway is still required. A translocon protein complex, PTEX, is the only known pathway that mediates passage of exported proteins across the PVM. P. falciparum Parasitophorous Vacuolar protein 1 (PfPV1), a previously reported parasitophorous vacuole (PV) protein, is considered essential for parasite growth. In this study, we characterized PfPV1 as a novel merozoite dense granule protein. Structured illumination microscopy (SIM) analyses demonstrated that PfPV1 partially co-localized with EXP2, suggesting the protein could be a PTEX accessory molecule. Furthermore, PfPV1 and exported protein PTP5 co-immunoprecipitated with anti-PfPV1 antibody. Surface plasmon resonance (SPR) confirmed the proteins’ direct interaction. Additionally, we identified a PfPV1 High-affinity Region (PHR) at the C-terminal side of PTP5 where PfPV1 dominantly bound. SIM analysis demonstrated an export arrest of PTP5ΔPHR, a PTP5 mutant lacking PHR, suggesting PHR is essential for PTP5 export to the infected erythrocyte cytosol. The overall results suggest that PfPV1, a novel dense granule protein, plays an important role in protein export at PV.


International Journal of Environmental Research and Public Health | 2014

Hematological and biochemical data obtained in rural northern Uganda

Nirianne Marie Q. Palacpac; Edward H. Ntege; Betty Balikagala; Adoke Yeka; Hiroki Shirai; Nahoko Suzuki; Christopher Nsereko; Bernard N. Kanoi; Takuya Okada; Thomas G. Egwang; Toshihiro Horii

Reference intervals for common hematological and clinical chemistry parameters constitute an important basis for health care. Moreover, with increasing priority in drug and vaccine development for infectious diseases in Africa, the first priority is the safety evaluation and tolerability of the candidate interventions in healthy populations. To accurately assess health status and address adverse events, clinical reference intervals in the target population are necessary. We report on hematological and biochemical indices from healthy volunteers who participated in a clinical trial in Lira, northern Uganda. Median and nonparametric 95% percentiles on five hematology and 15 biochemistry analytes are shown. Although most hematological analytes conformed to reported reference intervals and trends in Africa, literature review from different African countries highlight the need for a region-specific children reference interval that can be appropriate for the population.


Parasitology International | 2018

Identification of target proteins of clinical immunity to Plasmodium falciparum in a region of low malaria transmission

Hirokazu Sakamoto; Satoru Takeo; Eizo Takashima; Kazutoyo Miura; Bernard N. Kanoi; Takamasa Kaneko; Eun-Taek Han; Mayumi Tachibana; Kazuhiro Matsuoka; Jetsumon Sattabongkot; Rachanee Udomsangpetch; Tomoko Ishino; Takafumi Tsuboi

The target molecules of antibodies against falciparum malaria remain largely unknown. Recently we have identified multiple proteins as targets of immunity against Plasmodium falciparum using African serum samples. To investigate whether potential targets of clinical immunity differ with transmission intensity, we assessed immune responses in residents of low malaria transmission region in Thailand. Malaria asymptomatic volunteers (Asy: n=19) and symptomatic patients (Sym: n=21) were enrolled into the study. Serum immunoreactivity to 186 wheat germ cell-free system (WGCFS)-synthesized recombinant P. falciparum asexual-blood stage proteins were determined by AlphaScreen, and subsequently compared between the study groups. Forty proteins were determined as immunoreactive with antibody responses to 35 proteins being higher in Asy group than in Sym group. Among the 35 proteins, antibodies to MSP3, MSPDBL1, RH2b, and MSP7 were significantly higher in Asy than Sym (unadjusted p<0.005) suggesting these antigens may have a protective role in clinical malaria. MSP3 reactivity remained significantly different between Asy and Sym groups even after multiple comparison adjustments (adjusted p=0.033). Interestingly, while our two preceding studies using African sera were conducted differently (e.g., cross-sectional vs. longitudinal design, observed clinical manifestation vs. functional activity), those studies similarly identified MSP3 and MSPDBL1 as potential targets of protective immunity. This study further provides a strong rationale for the application of WGCFS-based immunoprofiling to malaria vaccine candidate and biomarker discovery even in low or reduced malaria transmission settings.


PLOS Neglected Tropical Diseases | 2017

Naturally acquired antibody responses to more than 300 Plasmodium vivax proteins in three geographic regions

Rhea J. Longley; Michael T. White; Eizo Takashima; Masayuki Morita; Bernard N. Kanoi; Connie S. N. Li Wai Suen; Inoni Betuela; Andrea Kuehn; Piyarat Sripoorote; Camila T. França; Peter Siba; Leanne J. Robinson; Marcus V. G. Lacerda; Jetsumon Sattabongkot; Takafumi Tsuboi; Ivo Mueller

Plasmodium vivax remains an important cause of malaria in South America and the Asia-Pacific. Naturally acquired antibody responses against multiple P. vivax proteins have been described in numerous countries, however, direct comparison of these responses has been difficult with different methodologies employed. We measured antibody responses against 307 P. vivax proteins at the time of P. vivax infection, and at 2–3 later time-points in three countries. We observed that seropositivity rates at the time of infection were highest in Thailand, followed by Brazil then PNG, reflecting the level of antigenic input. The majority of sero-reactive antigens in all sites induced short-lived antibody responses with estimated half-lives of less than 6 months, although there was a trend towards longer-lived responses in PNG children. Despite these differences, IgG seropositivity rates, magnitude and longevity were highly and significantly rank-correlated between the different regions, suggesting such features are reflective of the individual protein.


Scientific Reports | 2016

Antibody titres and boosting after natural malaria infection in BK-SE36 vaccine responders during a follow-up study in Uganda.

Masanori Yagi; Nirianne Marie Q. Palacpac; Kazuya Ito; Yuko Oishi; Sawako Itagaki; Betty Balikagala; Edward H. Ntege; Adoke Yeka; Bernard N. Kanoi; Osbert T. Katuro; Hiroki Shirai; Wakaba Fukushima; Yoshio Hirota; Thomas G. Egwang; Toshihiro Horii

The malaria vaccine BK-SE36 is a recombinant protein (SE36) based on the Honduras 1 serine repeat antigen-5 of Plasmodium falciparum, adsorbed to aluminium hydroxide gel. The phase Ib trial in Uganda demonstrated the safety and immunogenicity of BK-SE36. Ancillary analysis in the follow-up study of 6–20 year-old volunteers suggest significant differences in time to first episodes of clinical malaria in vaccinees compared to placebo/control group. Here, we aimed to get further insights into the association of anti-SE36 antibody titres and natural P. falciparum infection. Children who received BK-SE36 and whose antibody titres against SE36 increased by ≥1.92-fold after vaccination were categorised as responders. Most responders did not have or only had a single episode of natural P. falciparum infection. Notably, responders who did not experience infection had relatively high anti-SE36 antibody titres post-second vaccination compared to those who were infected. The anti-SE36 antibody titres of the responders who experienced malaria were boosted after infection and they had lower risk of reinfection. These findings show that anti-SE36 antibody titres induced by BK-SE36 vaccination offered protection against malaria. The vaccine is now being evaluated in a phase Ib trial in children less than 5 years old.

Collaboration


Dive into the Bernard N. Kanoi's collaboration.

Top Co-Authors

Avatar

Thomas G. Egwang

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge