Bernard Parisse
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bernard Parisse.
Communications in Partial Differential Equations | 1994
Yves Colin de Verdière; Bernard Parisse
On s’intéresse tout d’abord aux fonctions propres de l’opérateur de Schrödinger en dimension 1: (− 2 2 ∂ ∂x2 + V (x))φ(x) = E(h)φ(x), (1) • où V est un potentiel C∞, V (x) = −x/2 + o(x) au voisinage de x = 0 et lim inf |x|→∞ V (x) > 0. • où h tend vers 0 (limite semi-classique) • et où E(h) est un niveau d’énergie qui tend vers 0 lorsque h tend vers 0. On montrera que les fonctions propres se concentrent au point x = 0 à une vitesse au plus logarithmique en h. On en déduira l’existence de fonctions propres du laplacien sur des surfaces de révolution de courbure -1 qui se concentrent sur une géodésique instable (en 1/ ln(λk)).
Computer Algebra and Polynomials | 2015
Zoltán Kovács; Bernard Parisse
GeoGebra is open source mathematics education software being used in thousands of schools worldwide. It already supports equation system solving, locus equation computation and automatic geometry theorem proving by using an embedded or outsourced CAS. GeoGebra recently changed its embedded CAS from Reduce to Giac because it fits better into the educational use. Also careful benchmarking of open source Grobner basis implementations showed that Giac is fast in algebraic computations, too, therefore it allows heavy Grobner basis calculations even in a web browser via Javascript.
Journal of Mathematical Physics | 2000
Frédéric Faure; Bernard Parisse
The semi-classical study of the integer quantum Hall conductivity is investigated for electrons in a biperiodic potential V(x,y). The Hall conductivity is due to the tunnelling effect and we concentrate our study on potentials having three wells in a periodic cell. We show that a nonzero topological conductivity requires special conditions for the positions and shapes of the wells. The results are derived by changing the potential, using the topological nature of Chern indices. Our numerical calculations show that these semi-classical results are still valid for small value of B.The semi-classical study of the integer Quantum Hall conductivity is investigated for electrons in a bi-periodic potential
Communications in Mathematical Physics | 1999
Yves Colin de Verdière; Bernard Parisse
V(x,y)
Séminaire Équations aux dérivées partielles (Polytechnique) | 1994
Y. Colin de Verdière; Bernard Parisse
. The Hall conductivity is due to the tunnelling effect and we concentrate our study to potentials having three wells in a periodic cell. A non-zero topological conductivity requires special conditions for the positions, and shapes of the wells. The results are derived analytically and well confirmed by numerical calculations.
Annales De L Institut Henri Poincare-physique Theorique | 1994
Y. Colin De Verdiere; Bernard Parisse
Helvetica Physica Acta | 1992
Bernard Parisse
arXiv: Symbolic Computation | 2004
Bernard Parisse; Morgane Vaughan
arXiv: Symbolic Computation | 2013
Bernard Parisse
Asymptotic Analysis | 1995
Bernard Parisse