Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bernard Reynaud is active.

Publication


Featured researches published by Bernard Reynaud.


Bulletin of Entomological Research | 2005

A new silverleaf-inducing biotype Ms of Bemisia tabaci (Hemiptera: Aleyrodidae) indigenous to the islands of the south-west Indian Ocean.

Hélène Delatte; Bernard Reynaud; Martine Granier; Laetitia Thornary; Jean-Michel Lett; Rob Goldbach; Michel Peterschmitt

Following the first detection of tomato yellow leaf curl virus (TYLCV) from Reunion (700 km east of Madagascar) in 1997 and the upsurge of Bemisia tabaci (Gennadius) on vegetable crops, two genetic types of B. tabaci were distinguished using RAPD-PCR and cytochrome oxidase I (COI) gene sequence comparisons. One type was assigned to biotype B and the other was genetically dissimilar to the populations described elsewhere and was named Ms, after the Mascarenes Archipelago. This new genetic type forms a distinct group that is sister to two other groups, one to which the B biotype is a member and one to which the Q biotype belongs. The Ms biotype is thought to be indigenous to the region as it was also detected in Mauritius, the Seychelles and Madagascar. Both B and Ms populations of B. tabaci induced silverleaf symptoms on Cucurbita sp., and were able to acquire and transmit TYLCV. Taken together these results indicate that the Ms genetic type should be considered a new biotype of B. tabaci.


Journal of General Virology | 1998

Quasispecies nature of three maize streak virus isolates obtained through different modes of selection from a population used to assess response to infection of maize cultivars.

Muriel Isnard; Martine Granier; Roger Frutos; Bernard Reynaud; Michel Peterschmitt

Three maize streak virus (MSV) isolates were derived from an MSV population used to assess the response to infection of maize cultivars. Isolate SP1 was obtained from this population through short acquisition and inoculation periods (1 and 5 min, respectively), using a single Cicadulina mbila vector. Isolate SP2 was derived from SP1 after transmission to a wild perennial host (Coix lacryma-jobi), on which it was maintained for about 4 years without insect transmission. Isolate N2A, the most pathogenic isolate, was obtained from the initial population after serial passages on almost completely resistant inbred maize lines. The complexity of each isolate was analysed by RFLP analysis and sequencing based on 120 SP1 clones, 36 SP2 clones and 40 N2A clones. All three isolates were composed of different but related clones, consistent with a quasispecies structure. The mutations were distributed throughout the genome. Mutation frequencies, based on all available sequences, were 3.8 x 10(-4) for SP1, 10.5 x 10(-4) for SP2 and 6.9 x 10(-4) for N2A. As expected from the bottleneck selection step, the intra-isolate variability of SP1 was relatively low. Comparison between SP1 and SP2 showed that SP1 heterogeneity increased during maintenance on the wild host. Furthermore, the consensus sequences of SP1 and SP2 differed by two non-synonymous substitutions in the complementary sense gene repA. N2A had a relatively low degree of heterogeneity, but was composed of several sub-populations. The results reflect the influence of the mode of selection of MSV isolates on their quasispecies organization, i.e. distribution of variants, and master sequence.


Genetics Research | 2006

Microsatellites reveal extensive geographical, ecological and genetic contacts between invasive and indigenous whitefly biotypes in an insular environment.

Hélène Delatte; Patrice David; Martine Granier; Jean-Michel Lett; Rob Goldbach; Michel Peterschmitt; Bernard Reynaud

Human-mediated bioinvasions provide the opportunity to study the early stages of contact between formerly allopatric, divergent populations of a species. However, when invasive and resident populations are morphologically similar, it may be very difficult to assess their distribution in the field, as well as the extent of ecological overlap and genetic exchanges between invasive and resident populations. We here illustrate the use of data obtained from a set of eight microsatellite markers together with Bayesian clustering methods to document invasions in a group of major tropical pests, Bemisia tabaci, which comprises several morphologically indistinguishable biotypes with different agronomic impacts. We focus on the island of La Réunion, where an invasive biotype (B) has recently been introduced and now interacts with the resident biotype (Ms). The temporal and spatial distribution, host-plant range and genetic structure of both biotypes are investigated. We showed (i) that, without prior information, clustering methods separate two groups of individuals that can safely be identified as the B and Ms biotypes; (ii) that the B biotype has invaded all regions of the island, and showed no signs of genetic founder effect relative to the Ms biotype; (iii) that the B and Ms biotypes coexist in sympatry throughout most of their geographical ranges, although they tend to segregate into different host plants; and finally (iv) that asymmetrical and locus-specific introgression occurs between the two biotypes when they are in syntopy.


PLOS Pathogens | 2011

Complex recombination patterns arising during geminivirus coinfections preserve and demarcate biologically important intra-genome interaction networks

Darren P. Martin; Pierre Lefeuvre; Arvind Varsani; Murielle Hoareau; Jean-Yves Semegni; Betty Dijoux; Claire Vincent; Bernard Reynaud; Jean-Michel Lett

Genetic recombination is an important process during the evolution of many virus species and occurs particularly frequently amongst begomoviruses in the single stranded DNA virus family, Geminiviridae. As in many other recombining viruses it is apparent that non-random recombination breakpoint distributions observable within begomovirus genomes sampled from nature are the product of variations both in basal recombination rates across genomes and in the over-all viability of different recombinant genomes. Whereas factors influencing basal recombination rates might include local degrees of sequence similarity between recombining genomes, nucleic acid secondary structures and genomic sensitivity to nuclease attack or breakage, the viability of recombinant genomes could be influenced by the degree to which their co-evolved protein-protein and protein-nucleotide and nucleotide-nucleotide interactions are disreputable by recombination. Here we investigate patterns of recombination that occur over 120 day long experimental infections of tomato plants with the begomoviruses Tomato yellow leaf curl virus and Tomato leaf curl Comoros virus. We show that patterns of sequence exchange between these viruses can be extraordinarily complex and present clear evidence that factors such as local degrees of sequence similarity but not genomic secondary structure strongly influence where recombination breakpoints occur. It is also apparent from our experiment that over-all patterns of recombination are strongly influenced by selection against individual recombinants displaying disrupted intra-genomic interactions such as those required for proper protein and nucleic acid folding. Crucially, we find that selection favoring the preservation of co-evolved longer-range protein-protein and protein DNA interactions is so strong that its imprint can even be used to identify the exact sequence tracts involved in these interactions.


Theoretical and Applied Genetics | 1999

Genetic mapping of maize streak virus resistance from the Mascarene source. I. Resistance in line D211 and stability against different virus clones

Alix Pernet; David Hoisington; Jorge Franco; M. Isnard; D. Jewell; C. Jiang; Jean-Leu Marchand; Bernard Reynaud; Jean-Christophe Glaszmann; D. González de León

Abstract Maize streak virus (MSV) disease may cause significant grain yield reductions in maize in Africa. Réunion island maize germplasm is a proven source of strong resistance. Its genetic control was investigated using 123 RFLP markers in an F2 population of D211 (resistant) × B73 (susceptible). This population of 165 F2:3 families was carefully evaluated in Harare (Zimbabwe) and in Réunion. Artificial infestation was done with viruliferous leafhoppers. Each plant was rated weekly six times after infestation on a 1–9 scale previously adjusted by image analysis. QTL analyses were conducted for each scoring date, and for the areas under the disease, incidence and severity progress curves. The composite interval mapping method used allowed the estimation of the additive and dominance effects and QTL × environment interactions. Heritabilities ranged from 73% to 98%, increasing with time after infestation. Resistance to streak virus in D211 was provided by one region on chromosome 1, with a major effect, and four other regions on chromosomes 2, 3 (two regions) and 10, with moderate or minor effects. Overall, they explained 48–62% of the phenotypic variation for the different variables. On chromosome 3, one of the two regions seemed to be more involved in early resistance, whereas the second was detected at the latest scoring date. Other QTLs were found to be stable over time and across environments. Mild QTL × environment interactions were detected. Global gene action appeared to be partially dominant, in favor of resistance, except at the earliest scoring dates, where it was additive. From this population, 32 families were chosen, representing the whole range of susceptibility to MSV. They were tested in Réunion against three MSV clones, along with a co-inoculation of two of them. Virulence differences between clones were significant. There were genotype × clone interactions, and these were more marked for disease incidence than for severity. Although these interactions were not significant for the mean disease scores, it is suggested that breeders should select for completely resistant genotypes.


BMC Microbiology | 2012

Evidence of diversity and recombination in Arsenophonus symbionts of the Bemisia tabaci species complex

Laurence Mouton; Magali Thierry; Hélène Henri; Rémy Baudin; Olivier Gnankine; Bernard Reynaud; Einat Zchori-Fein; Nathalie Becker; Frédéric Fleury; Hélène Delatte

BackgroundMaternally inherited bacterial symbionts infecting arthropods have major implications on host ecology and evolution. Among them, the genus Arsenophonus is particularly characterized by a large host spectrum and a wide range of symbiotic relationships (from mutualism to parasitism), making it a good model to study the evolution of host-symbiont associations. However, few data are available on the diversity and distribution of Arsenophonus within host lineages. Here, we propose a survey on Arsenophonus diversity in whitefly species (Hemiptera), in particular the Bemisia tabaci species complex. This polyphagous insect pest is composed of genetic groups that differ in many ecological aspects. They harbor specific bacterial communities, among them several lineages of Arsenophonus, enabling a study of the evolutionary history of these bacteria at a fine host taxonomic level, in association to host geographical range and ecology.ResultsAmong 152 individuals, our analysis identified 19 allelic profiles and 6 phylogenetic groups, demonstrating this bacteriums high diversity. These groups, based on Arsenophonus phylogeny, correlated with B. tabaci genetic groups with two exceptions reflecting horizontal transfers. None of three genes analyzed provided evidence of intragenic recombination, but intergenic recombination events were detected. A mutation inducing a STOP codon on one gene in a strain infecting one B. tabaci genetic group was also found. Phylogenetic analyses of the three concatenated loci revealed the existence of two clades of Arsenophonus. One, composed of strains found in other Hemiptera, could be the ancestral clade in whiteflies. The other, which regroups strains found in Hymenoptera and Diptera, may have been acquired more recently by whiteflies through lateral transfers.ConclusionsThis analysis of the genus Arsenophonus revealed a diversity within the B. tabaci species complex which resembles that reported on the larger scale of insect taxonomy. We also provide evidence for recombination events within the Arsenophonus genome and horizontal transmission of strains among insect taxa. This work provides further insight into the evolution of the Arsenophonus genome, the infection dynamics of this bacterium and its influence on its insect hosts ecology.


Biological Invasions | 2009

Differential invasion success among biotypes: case of Bemisia tabaci

Hélène Delatte; Pierre François Duyck; Aurélie Triboire; Patrice David; Nathalie Becker; Olivier Bonato; Bernard Reynaud

Studies on success or failures of biological invasions by different insect biotypes are scarce and could provide interesting insights into the traits that determine greater or lower ability to invade. Life history traits of invasive whiteflies Bemisia tabaci of the B biotype (known as a worldwide invasive biotype) and of the indigenous biotype Ms (not known as an invader anywhere in the world), both from the island of La Réunion (Indian Ocean), were compared for this purpose. In our study we demonstrated that within a cultivated host plant (tomato), the B biotype differs from the Ms by a combination of several life-history traits. This combination gives the invasive biotype an advantage over the resident both in terms of rapid demographic growth (increased intrinsic rate of increase and associated traits such as short developmental times and high fecundity) and in terms of competition (large adult and offspring sizes), without any recorded trade off. However, in the field the resident biotype remains dominant on non-cultivated hosts (weeds) and in a particular climate (high humidity). This suggests that invasive biotypes are characterized by physiological, morphological and biological adaptations to a disturbed environment created by anthropic activities at different places in the world, while resident biotypes may persist in less altered habitats.


Molecular Ecology | 2011

Symbiont diversity and non-random hybridization among indigenous (Ms) and invasive (B) biotypes of Bemisia tabaci

Magalie Thierry; Nathalie Becker; Ahmed Hajri; Bernard Reynaud; Jean-Michel Lett; Hélène Delatte

The whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is a worldwide pest and a vector of numerous plant viruses. B. tabaci is composed of dozens of morphologically indistinguishable biotypes and its taxonomic status is still controversial. This phloem‐feeder harbours the primary symbiont Portiera aleyrodidarum and potentially six secondary symbionts: Cardinium, Arsenophonus, Hamiltonella, Rickettsia, Wolbachia and Fritschea. In the southwest Indian Ocean, La Réunion hosts two biotypes of this species: B (invasive) and Ms (indigenous). A multiplex PCR was developed to study the symbiont community of B. tabaci on La Réunion. Symbiont community prevalence and composition, host mitochondrial and nuclear genetic diversity, as well as host plant and localization, were described on field populations of La Réunion for B and Ms B. tabaci biotypes and their hybrids. A clear association between symbiotypes and biotypes was shown. Cardinium, Arsenophonus and Rickettsia were found in the Ms biotype (73.6%, 64.2% and 3.3%, respectively). Hamiltonella (exclusively) and Rickettsia were found in the B biotype (78% and 91.2%, respectively). Hybrids harboured all symbiotypes found in Ms and B populations, but with a higher prevalence of Ms symbiotypes than expected under random hybridization. An unexpected majority was Cardinium mono‐infected (65.6%), and a striking minority (9%) harboured Cardinium/Arsenophonus. In the hybrids only, genetic diversity was linked to symbiotype. Among the hybrids, significant links were found between symbiotypes and: (i) mitochondrial COI sequences, i.e. maternal origin; and (ii) alleles of nuclear microsatellite loci, specific to either Ms or B parental biotype. Taken together, our results suggest that Cardinium and/or Arsenophonus may manipulate the reproduction of indigenous (Ms) with invasive (B) biotypes of Bemisia tabaci.


Phytopathology | 2002

Spatial and Temporal Distribution of Geminiviruses in Leafhoppers of the Genus Cicadulina Monitored by Conventional and Quantitative Polymerase Chain Reaction

Jean-Michel Lett; Martine Granier; Isabelle Hippolyte; Martial Grondin; Monique Royer; Stéphane Blanc; Bernard Reynaud; Michel Peterschmitt

ABSTRACT Spatial and temporal distribution of Maize streak virus (MSV, family Geminiviridae, genus Mastrevirus) was monitored in the vector species Cicadulina mbila and the nonvector species C. chinaï using conventional and real-time quantitative polymerase chain reaction. Sustained feeding on MSV-infected plants showed that virus accumulation reaches a maximum in C. chinaï, but not in C. mbila. After a 3-day acquisition access feeding period (AAP), MSV was detected in the gut, the hemolymph, and the head of C. mbila, but only in the gut of C. chinaï. Similarly, Digitaria streak virus (genus Mastrevirus), which is not transmitted by either of the two species, was only detected in the gut. MSV was detected in the hemolymph of C. mbila 3 h after the beginning of the AAP. Although viral DNA progressively decreases in the vector and nonvector species after a 3-day AAP, MSV DNA remained stable in the salivary glands of C. mbila.


Virology Journal | 2010

Molecular diversity of Cotton leaf curl Gezira virus isolates and their satellite DNAs associated with okra leaf curl disease in Burkina Faso

Fidèle Tiendrebeogo; Pierre Lefeuvre; Murielle Hoareau; Julie Villemot; Gnissa Konaté; Alfred S. Traore; Nicolas Barro; Valentin S.E. Traore; Bernard Reynaud; Oumar Traoré; Jean-Michel Lett

Okra leaf curl disease (OLCD) is a major constraint on okra (Abelmoschusesculentus) production and is widespread in Africa. Using a large number of samples representative of the major growing regions in Burkina Faso (BF), we show that the disease is associated with a monopartite begomovirus and satellite DNA complexes. Twenty-three complete genomic sequences of Cotton leaf curl Gezira virus (CLCuGV) isolates associated with OLCD, sharing 95 to 99% nucleotide identity, were cloned and sequenced. Six betasatellite and four alphasatellite (DNA-1) molecules were also characterized. The six isolates of betasatellite associated with CLCuGV isolates correspond to Cotton leaf curl Gezira betasatellite (CLCuGB) (88 to 98% nucleotide identity). One isolate of alphasatellite is a variant of Cotton leaf curl Gezira alphasatellite (CLCuGA) (89% nucleotide identity), whereas the three others isolates appear to correspond to a new species of alphasatellite (CLCuGA most similar sequence present 52 to 60% nucleotide identity), provisionally named Okra leaf curl Burkina Faso alphasatellite (OLCBFA). Recombination analysis of the viruses demonstrated the interspecies recombinant origin of all CLCuGV isolates, with parents being close to Hollyhock leaf crumple virus (AY036009) and Tomato leaf curl Diana virus (AM701765). Combined with the presence of satellites DNA, these results highlight the complexity of begomoviruses associated with OLCD.

Collaboration


Dive into the Bernard Reynaud's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre Lefeuvre

University of La Réunion

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nathalie Becker

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge