Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jean-Michel Lett is active.

Publication


Featured researches published by Jean-Michel Lett.


Journal of Virology | 2009

Widely Conserved Recombination Patterns among Single-Stranded DNA Viruses

Pierre Lefeuvre; Jean-Michel Lett; Arvind Varsani; Darren P. Martin

ABSTRACT The combinatorial nature of genetic recombination can potentially provide organisms with immediate access to many more positions in sequence space than can be reached by mutation alone. Recombination features particularly prominently in the evolution of a diverse range of viruses. Despite rapid progress having been made in the characterization of discrete recombination events for many species, little is currently known about either gross patterns of recombination across related virus families or the underlying processes that determine genome-wide recombination breakpoint distributions observable in nature. It has been hypothesized that the networks of coevolved molecular interactions that define the epistatic architectures of virus genomes might be damaged by recombination and therefore that selection strongly influences observable recombination patterns. For recombinants to thrive in nature, it is probably important that the portions of their genomes that they have inherited from different parents work well together. Here we describe a comparative analysis of recombination breakpoint distributions within the genomes of diverse single-stranded DNA (ssDNA) virus families. We show that whereas nonrandom breakpoint distributions in ssDNA virus genomes are partially attributable to mechanistic aspects of the recombination process, there is also a significant tendency for recombination breakpoints to fall either outside or on the peripheries of genes. In particular, we found significantly fewer recombination breakpoints within structural protein genes than within other gene types. Collectively, these results imply that natural selection acting against viruses expressing recombinant proteins is a major determinant of nonrandom recombination breakpoint distributions observable in most ssDNA virus families.


PLOS Pathogens | 2010

The Spread of Tomato Yellow Leaf Curl Virus from the Middle East to the World

Pierre Lefeuvre; Darren P. Martin; Gordon William Harkins; Philippe Lemey; Alistair J. A. Gray; Sandra Meredith; Francisco M. Lakay; Adérito L. Monjane; Jean-Michel Lett; Arvind Varsani; Jahangir Heydarnejad

The ongoing global spread of Tomato yellow leaf curl virus (TYLCV; Genus Begomovirus, Family Geminiviridae) represents a serious looming threat to tomato production in all temperate parts of the world. Whereas determining where and when TYLCV movements have occurred could help curtail its spread and prevent future movements of related viruses, determining the consequences of past TYLCV movements could reveal the ecological and economic risks associated with similar viral invasions. Towards this end we applied Bayesian phylogeographic inference and recombination analyses to available TYLCV sequences (including those of 15 new Iranian full TYLCV genomes) and reconstructed a plausible history of TYLCVs diversification and movements throughout the world. In agreement with historical accounts, our results suggest that the first TYLCVs most probably arose somewhere in the Middle East between the 1930s and 1950s (with 95% highest probability density intervals 1905–1972) and that the global spread of TYLCV only began in the 1980s after the evolution of the TYLCV-Mld and -IL strains. Despite the global distribution of TYLCV we found no convincing evidence anywhere other than the Middle East and the Western Mediterranean of epidemiologically relevant TYLCV variants arising through recombination. Although the region around Iran is both the center of present day TYLCV diversity and the site of the most intensive ongoing TYLCV evolution, the evidence indicates that the region is epidemiologically isolated, which suggests that novel TYLCV variants found there are probably not direct global threats. We instead identify the Mediterranean basin as the main launch-pad of global TYLCV movements.


Journal of General Virology | 2008

Recombination, decreased host specificity and increased mobility may have driven the emergence of maize streak virus as an agricultural pathogen.

Arvind Varsani; Dionne N. Shepherd; Adérito L. Monjane; Betty E. Owor; Julia B. Erdmann; Edward P. Rybicki; Michel Peterschmitt; Rob W. Briddon; P. G. Markham; Sunday Oluwafemi; Oliver P. Windram; Pierre Lefeuvre; Jean-Michel Lett; Darren P. Martin

Maize streak virus (MSV; family Geminiviridae, genus Mastrevirus), the causal agent of maize streak disease, ranks amongst the most serious biological threats to food security in subSaharan Africa. Although five distinct MSV strains have been currently described, only one of these – MSV-A – causes severe disease in maize. Due primarily to their not being an obvious threat to agriculture, very little is known about the ‘grass-adapted’ MSV strains, MSV-B, -C, -D and -E. Since comparing the genetic diversities, geographical distributions and natural host ranges of MSV-A with the other MSV strains could provide valuable information on the epidemiology, evolution and emergence of MSV-A, we carried out a phylogeographical analysis of MSVs found in uncultivated indigenous African grasses. Amongst the 83 new MSV genomes presented here, we report the discovery of six new MSV strains (MSV-F to -K). The non-random recombination breakpoint distributions detectable with these and other available mastrevirus sequences partially mirror those seen in begomoviruses, implying that the forces shaping these breakpoint patterns have been largely conserved since the earliest geminivirus ancestors. We present evidence that the ancestor of all MSV-A variants was the recombinant progeny of ancestral MSV-B and MSV-G/-F variants. While it remains unknown whether recombination influenced the emergence of MSV-A in maize, our discovery that MSV-A variants may both move between and become established in different regions of Africa with greater ease, and infect more grass species than other MSV strains, goes some way towards explaining why MSV-A is such a successful maize pathogen.


Bulletin of Entomological Research | 2005

A new silverleaf-inducing biotype Ms of Bemisia tabaci (Hemiptera: Aleyrodidae) indigenous to the islands of the south-west Indian Ocean.

Hélène Delatte; Bernard Reynaud; Martine Granier; Laetitia Thornary; Jean-Michel Lett; Rob Goldbach; Michel Peterschmitt

Following the first detection of tomato yellow leaf curl virus (TYLCV) from Reunion (700 km east of Madagascar) in 1997 and the upsurge of Bemisia tabaci (Gennadius) on vegetable crops, two genetic types of B. tabaci were distinguished using RAPD-PCR and cytochrome oxidase I (COI) gene sequence comparisons. One type was assigned to biotype B and the other was genetically dissimilar to the populations described elsewhere and was named Ms, after the Mascarenes Archipelago. This new genetic type forms a distinct group that is sister to two other groups, one to which the B biotype is a member and one to which the Q biotype belongs. The Ms biotype is thought to be indigenous to the region as it was also detected in Mauritius, the Seychelles and Madagascar. Both B and Ms populations of B. tabaci induced silverleaf symptoms on Cucurbita sp., and were able to acquire and transmit TYLCV. Taken together these results indicate that the Ms genetic type should be considered a new biotype of B. tabaci.


Genetics Research | 2006

Microsatellites reveal extensive geographical, ecological and genetic contacts between invasive and indigenous whitefly biotypes in an insular environment.

Hélène Delatte; Patrice David; Martine Granier; Jean-Michel Lett; Rob Goldbach; Michel Peterschmitt; Bernard Reynaud

Human-mediated bioinvasions provide the opportunity to study the early stages of contact between formerly allopatric, divergent populations of a species. However, when invasive and resident populations are morphologically similar, it may be very difficult to assess their distribution in the field, as well as the extent of ecological overlap and genetic exchanges between invasive and resident populations. We here illustrate the use of data obtained from a set of eight microsatellite markers together with Bayesian clustering methods to document invasions in a group of major tropical pests, Bemisia tabaci, which comprises several morphologically indistinguishable biotypes with different agronomic impacts. We focus on the island of La Réunion, where an invasive biotype (B) has recently been introduced and now interacts with the resident biotype (Ms). The temporal and spatial distribution, host-plant range and genetic structure of both biotypes are investigated. We showed (i) that, without prior information, clustering methods separate two groups of individuals that can safely be identified as the B and Ms biotypes; (ii) that the B biotype has invaded all regions of the island, and showed no signs of genetic founder effect relative to the Ms biotype; (iii) that the B and Ms biotypes coexist in sympatry throughout most of their geographical ranges, although they tend to segregate into different host plants; and finally (iv) that asymmetrical and locus-specific introgression occurs between the two biotypes when they are in syntopy.


PLOS Pathogens | 2011

Complex recombination patterns arising during geminivirus coinfections preserve and demarcate biologically important intra-genome interaction networks

Darren P. Martin; Pierre Lefeuvre; Arvind Varsani; Murielle Hoareau; Jean-Yves Semegni; Betty Dijoux; Claire Vincent; Bernard Reynaud; Jean-Michel Lett

Genetic recombination is an important process during the evolution of many virus species and occurs particularly frequently amongst begomoviruses in the single stranded DNA virus family, Geminiviridae. As in many other recombining viruses it is apparent that non-random recombination breakpoint distributions observable within begomovirus genomes sampled from nature are the product of variations both in basal recombination rates across genomes and in the over-all viability of different recombinant genomes. Whereas factors influencing basal recombination rates might include local degrees of sequence similarity between recombining genomes, nucleic acid secondary structures and genomic sensitivity to nuclease attack or breakage, the viability of recombinant genomes could be influenced by the degree to which their co-evolved protein-protein and protein-nucleotide and nucleotide-nucleotide interactions are disreputable by recombination. Here we investigate patterns of recombination that occur over 120 day long experimental infections of tomato plants with the begomoviruses Tomato yellow leaf curl virus and Tomato leaf curl Comoros virus. We show that patterns of sequence exchange between these viruses can be extraordinarily complex and present clear evidence that factors such as local degrees of sequence similarity but not genomic secondary structure strongly influence where recombination breakpoints occur. It is also apparent from our experiment that over-all patterns of recombination are strongly influenced by selection against individual recombinants displaying disrupted intra-genomic interactions such as those required for proper protein and nucleic acid folding. Crucially, we find that selection favoring the preservation of co-evolved longer-range protein-protein and protein DNA interactions is so strong that its imprint can even be used to identify the exact sequence tracts involved in these interactions.


Molecular Ecology | 2011

Symbiont diversity and non-random hybridization among indigenous (Ms) and invasive (B) biotypes of Bemisia tabaci

Magalie Thierry; Nathalie Becker; Ahmed Hajri; Bernard Reynaud; Jean-Michel Lett; Hélène Delatte

The whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is a worldwide pest and a vector of numerous plant viruses. B. tabaci is composed of dozens of morphologically indistinguishable biotypes and its taxonomic status is still controversial. This phloem‐feeder harbours the primary symbiont Portiera aleyrodidarum and potentially six secondary symbionts: Cardinium, Arsenophonus, Hamiltonella, Rickettsia, Wolbachia and Fritschea. In the southwest Indian Ocean, La Réunion hosts two biotypes of this species: B (invasive) and Ms (indigenous). A multiplex PCR was developed to study the symbiont community of B. tabaci on La Réunion. Symbiont community prevalence and composition, host mitochondrial and nuclear genetic diversity, as well as host plant and localization, were described on field populations of La Réunion for B and Ms B. tabaci biotypes and their hybrids. A clear association between symbiotypes and biotypes was shown. Cardinium, Arsenophonus and Rickettsia were found in the Ms biotype (73.6%, 64.2% and 3.3%, respectively). Hamiltonella (exclusively) and Rickettsia were found in the B biotype (78% and 91.2%, respectively). Hybrids harboured all symbiotypes found in Ms and B populations, but with a higher prevalence of Ms symbiotypes than expected under random hybridization. An unexpected majority was Cardinium mono‐infected (65.6%), and a striking minority (9%) harboured Cardinium/Arsenophonus. In the hybrids only, genetic diversity was linked to symbiotype. Among the hybrids, significant links were found between symbiotypes and: (i) mitochondrial COI sequences, i.e. maternal origin; and (ii) alleles of nuclear microsatellite loci, specific to either Ms or B parental biotype. Taken together, our results suggest that Cardinium and/or Arsenophonus may manipulate the reproduction of indigenous (Ms) with invasive (B) biotypes of Bemisia tabaci.


Plant Disease | 2006

Geographical Distribution of Four Sugarcane yellow leaf virus Genotypes

Youssef Abu Ahmad; Monique Royer; Jean-Heinrich Daugrois; Laurent Costet; Jean-Michel Lett; Jorge I. Victoria; Jean-Claude Girard; Philippe Rott

Specific primer pairs were designed to distinguish four genotypes (BRA for Brazil, CUB for Cuba, PER for Peru, and REU for Réunion Island) of Sugarcane yellow leaf virus (SCYLV) by reverse transcription-polymerase chain reaction (RT-PCR). A unique genome fragment was amplified from each genotype, with the exception of genotypes BRA and PER that are phylogenetically relatively close and were designated genotype BRA-PER. These RT-PCR primers were then used to identify the SCYLV genotype(s) present in 18 different sugarcane growing locations in the world, and 245 leaf samples infected by the virus were analyzed. Most samples were infected by only one of the three genotypes, but mixed infections occurred. Genotype BRA-PER was found in all sugarcane growing locations, whereas genotypes CUB and REU were each found in four geographical locations only. Genotypes BRA-PER, CUB, and REU were all three detected in locally bred sugarcane cultivars in Guadeloupe, indicating local transmission of these genotypes. In contrast, only genotypes BRA-PER and CUB were found in locally bred cultivars in Brazil, whereas genotype REU was detected in this country in cultivar R570 imported from Réunion. Similarly, genotypes BRA-PER and REU are both present in Réunion, but genotype BRA-PER has not, as of yet, spread on this island. Presence of several SCYLV genotypes in Brazil, Colombia, Guadeloupe, Mauritius, and Réunion suggests different virus introductions and/or different evolution histories of the virus after its introduction into a new environment.


PLOS ONE | 2011

Evolutionary Time-Scale of the Begomoviruses: Evidence from Integrated Sequences in the Nicotiana Genome

Pierre Lefeuvre; Gordon William Harkins; Jean-Michel Lett; Rob W. Briddon; Mark W. Chase; Benoît Moury; Darren P. Martin

Despite having single stranded DNA genomes that are replicated by host DNA polymerases, viruses in the family Geminiviridae are apparently evolving as rapidly as some RNA viruses. The observed substitution rates of geminiviruses in the genera Begomovirus and Mastrevirus are so high that the entire family could conceivably have originated less than a million years ago (MYA). However, the existence of geminivirus related DNA (GRD) integrated within the genomes of various Nicotiana species suggests that the geminiviruses probably originated >10 MYA. Some have even suggested that a distinct New-World (NW) lineage of begomoviruses may have arisen following the separation by continental drift of African and American proto-begomoviruses ∼110 MYA. We evaluate these various geminivirus origin hypotheses using Bayesian coalescent-based approaches to date firstly the Nicotiana GRD integration events, and then the divergence of the NW and Old-World (OW) begomoviruses. Besides rejecting the possibility of a<2 MYA OW-NW begomovirus split, we could also discount that it may have occurred concomitantly with the breakup of Gondwanaland 110 MYA. Although we could only confidently narrow the date of the split down to between 2 and 80 MYA, the most plausible (and best supported) date for the split is between 20 and 30 MYA – a time when global cooling ended the dispersal of temperate species between Asia and North America via the Beringian land bridge.


Phytopathology | 2002

Spatial and Temporal Distribution of Geminiviruses in Leafhoppers of the Genus Cicadulina Monitored by Conventional and Quantitative Polymerase Chain Reaction

Jean-Michel Lett; Martine Granier; Isabelle Hippolyte; Martial Grondin; Monique Royer; Stéphane Blanc; Bernard Reynaud; Michel Peterschmitt

ABSTRACT Spatial and temporal distribution of Maize streak virus (MSV, family Geminiviridae, genus Mastrevirus) was monitored in the vector species Cicadulina mbila and the nonvector species C. chinaï using conventional and real-time quantitative polymerase chain reaction. Sustained feeding on MSV-infected plants showed that virus accumulation reaches a maximum in C. chinaï, but not in C. mbila. After a 3-day acquisition access feeding period (AAP), MSV was detected in the gut, the hemolymph, and the head of C. mbila, but only in the gut of C. chinaï. Similarly, Digitaria streak virus (genus Mastrevirus), which is not transmitted by either of the two species, was only detected in the gut. MSV was detected in the hemolymph of C. mbila 3 h after the beginning of the AAP. Although viral DNA progressively decreases in the vector and nonvector species after a 3-day AAP, MSV DNA remained stable in the salivary glands of C. mbila.

Collaboration


Dive into the Jean-Michel Lett's collaboration.

Top Co-Authors

Avatar

Bernard Reynaud

University of La Réunion

View shared research outputs
Top Co-Authors

Avatar

Pierre Lefeuvre

University of La Réunion

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arvind Varsani

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge