Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bernard Ryffel is active.

Publication


Featured researches published by Bernard Ryffel.


Nature Medicine | 2007

Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy

Lionel Apetoh; François Ghiringhelli; Antoine Tesniere; Michel Obeid; Carla Ortiz; Alfredo Criollo; Grégoire Mignot; M. Chiara Maiuri; Evelyn Ullrich; Patrick Saulnier; Huan Yang; Sebastian Amigorena; Bernard Ryffel; Franck J. Barrat; Paul Saftig; Francis Lévi; Rosette Lidereau; Catherine Noguès; Jean-Paul Mira; Agnès Chompret; Virginie Joulin; Françoise Clavel-Chapelon; Jean Bourhis; Fabrice Andre; Suzette Delaloge; Thomas Tursz; Guido Kroemer; Laurence Zitvogel

Conventional cancer treatments rely on radiotherapy and chemotherapy. Such treatments supposedly mediate their effects via the direct elimination of tumor cells. Here we show that the success of some protocols for anticancer therapy depends on innate and adaptive antitumor immune responses. We describe in both mice and humans a previously unrecognized pathway for the activation of tumor antigen–specific T-cell immunity that involves secretion of the high-mobility-group box 1 (HMGB1) alarmin protein by dying tumor cells and the action of HMGB1 on Toll-like receptor 4 (TLR4) expressed by dendritic cells (DCs). During chemotherapy or radiotherapy, DCs require signaling through TLR4 and its adaptor MyD88 for efficient processing and cross-presentation of antigen from dying tumor cells. Patients with breast cancer who carry a TLR4 loss-of-function allele relapse more quickly after radiotherapy and chemotherapy than those carrying the normal TLR4 allele. These results delineate a clinically relevant immunoadjuvant pathway triggered by tumor cell death.


Nature Medicine | 2006

A novel dendritic cell subset involved in tumor immunosurveillance

Julien Taieb; Nathalie Chaput; Cédric Ménard; Lionel Apetoh; Evelyn Ullrich; Mathieu Bonmort; Marie O. Pequignot; Noelia Casares; Magali Terme; Caroline Flament; Paule Opolon; Yann Lécluse; Didier Métivier; Elena Tomasello; Eric Vivier; François Ghiringhelli; François Martin; David Klatzmann; Thierry Poynard; Thomas Tursz; Graça Raposo; Hideo Yagita; Bernard Ryffel; Guido Kroemer; Laurence Zitvogel

The interferon (IFN)-γ–induced TRAIL effector mechanism is a vital component of cancer immunosurveillance by natural killer (NK) cells in mice. Here we show that the main source of IFN-γ is not the conventional NK cell but a subset of B220+Ly6C− dendritic cells, which are atypical insofar as they express NK cell-surface molecules. Upon contact with a variety of tumor cells that are poorly recognized by NK cells, B220+NK1.1+ dendritic cells secrete high levels of IFN-γ and mediate TRAIL-dependent lysis of tumor cells. Adoptive transfer of these IFN-producing killer dendritic cells (IKDCs) into tumor-bearing Rag2−/−Il2rg−/− mice prevented tumor outgrowth, whereas transfer of conventional NK cells did not. In conclusion, we identified IKDCs as pivotal sensors and effectors of the innate antitumor immune response.


Nature | 2011

Detection of prokaryotic mRNA signifies microbial viability and promotes immunity

Leif E. Sander; Michael J. Davis; Mark V. Boekschoten; Derk Amsen; Christopher C. Dascher; Bernard Ryffel; Joel A. Swanson; Michael Müller; J. Magarian Blander

Live vaccines have long been known to trigger far more vigorous immune responses than their killed counterparts. This has been attributed to the ability of live microorganisms to replicate and express specialized virulence factors that facilitate invasion and infection of their hosts. However, protective immunization can often be achieved with a single injection of live, but not dead, attenuated microorganisms stripped of their virulence factors. Pathogen-associated molecular patterns (PAMPs), which are detected by the immune system, are present in both live and killed vaccines, indicating that certain poorly characterized aspects of live microorganisms, not incorporated in dead vaccines, are particularly effective at inducing protective immunity. Here we show that the mammalian innate immune system can directly sense microbial viability through detection of a special class of viability-associated PAMPs (vita-PAMPs). We identify prokaryotic messenger RNA as a vita-PAMP present only in viable bacteria, the recognition of which elicits a unique innate response and a robust adaptive antibody response. Notably, the innate response evoked by viability and prokaryotic mRNA was thus far considered to be reserved for pathogenic bacteria, but we show that even non-pathogenic bacteria in sterile tissues can trigger similar responses, provided that they are alive. Thus, the immune system actively gauges the infectious risk by searching PAMPs for signatures of microbial life and thus infectivity. Detection of vita-PAMPs triggers a state of alert not warranted for dead bacteria. Vaccine formulations that incorporate vita-PAMPs could thus combine the superior protection of live vaccines with the safety of dead vaccines.


Journal of Experimental Medicine | 2011

Contribution of IL-17–producing γδ T cells to the efficacy of anticancer chemotherapy

Yuting Ma; Laetitia Aymeric; Clara Locher; Stephen R. Mattarollo; Nicolas F. Delahaye; Pablo Pereira; Laurent Boucontet; Lionel Apetoh; François Ghiringhelli; Noelia Casares; Juan José Lasarte; Goro Matsuzaki; Koichi Ikuta; Bernard Ryffel; Kamel Benlagha; Antoine Tesniere; Nicolas Ibrahim; Julie Déchanet-Merville; Nathalie Chaput; Mark J. Smyth; Guido Kroemer; Laurence Zitvogel

IL-17 production by γδ T cells is required for tumor cell infiltration by IFN-γ–producing CD8+ T cells and inhibition of tumor growth in response to anthracyclines.


Infection and Immunity | 2000

Immunopathologic effects of tumor necrosis factor alpha in murine mycobacterial infection are dose dependent.

Linda-Gail Bekker; Andre L. Moreira; Amy Bergtold; Sherry Freeman; Bernard Ryffel; Gilla Kaplan

ABSTRACT In experimental mycobacterial infection, tumor necrosis factor alpha (TNF-α) is required for control of bacillary growth and the protective granulomatous response, but may cause immunopathology. To directly examine the positive and detrimental effects of this cytokine, a murine model was used in which different amounts of TNF-α were delivered to the site of infection. Mice with a disruption in the TNF-α gene (TNF-KO) or wild-type mice were infected with low or high doses of recombinant Mycobacterium bovis BCG that secreted murine TNF-α (BCG-TNF). Infection of TNF-KO mice with BCG containing the vector (BCG-vector) at a low dose led to increased bacillary load in all organs and an extensive granulomatous response in the lungs and spleen. The mice succumbed to the infection by ∼40 days. However, when TNF-KO mice were infected with low doses of BCG-TNF, bacillary growth was controlled, granulomas were small and well differentiated, the spleen was not enlarged, and the mice survived. Infection with high inocula of BCG-TNF resulted in bacterial clearance, but was accompanied by severe inflammation in the lungs and spleen and earlier death compared to the results from the mice infected with high inocula of BCG-vector. Wild-type mice controlled infection with either recombinant strain, but showed decreased survival following high-dose BCG-TNF infection. The effects of TNF-α required signaling through an intact receptor, since the differential effects were not observed when TNF-α receptor-deficient mice were infected. The results suggest that the relative amount of TNF-α at the site of infection determines whether the cytokine is protective or destructive.


Journal of Immunology | 2001

TNF-α Controls Intracellular Mycobacterial Growth by Both Inducible Nitric Oxide Synthase-Dependent and Inducible Nitric Oxide Synthase-Independent Pathways

Linda-Gail Bekker; Sherry Freeman; Peter J. Murray; Bernard Ryffel; Gilla Kaplan

The role of TNF-α in the control of mycobacterial growth in murine macrophages was studied in vitro. Infection of macrophages from TNF-α gene disrupted (TNF-knockout (KO)) mice with recombinant Mycobacterium bovis bacillus Calmette Guérin (BCG) expressing the vector only (BCG-vector) resulted in logarithmic growth of the intracellular bacilli. Infection with BCG-secreting murine TNF-α (BCG-TNF) led to bacillary killing. Killing of BCG-TNF was associated with rapid accumulation of inducible NO synthase (iNOS) protein and the production of nitrite. The uncontrolled growth of BCG-vector was associated with low iNOS expression but no nitrite production. Thus, iNOS expression appears to be TNF-α independent but iNOS generation of NO requires TNF-α. In cultures of TNF-KO macrophages infected with BCG-TNF, inhibition of iNOS by aminoguanidine (AMG) abolished the killing of the bacilli. However, the growth of the organisms was still inhibited, suggesting an iNOS-independent TNF-α-mediated growth inhibition. To confirm this, macrophages from iNOS-KO mice were infected with either BCG-vector or BCG-TNF. As expected, no nitrite was detected in the culture medium. TNF-α was detected only when the cells were infected with BCG-TNF. In the iNOS-KO macrophages, the growth of BCG was inhibited only in the BCG-TNF infection. These results suggest that in the absence of iNOS activity, TNF-α stimulates macrophages to control the growth of intracellular BCG. Thus, there appears to be both a TNF-α-dependent-iNOS-dependent killing pathway as well as a TNF-α-dependent-iNOS-independent growth inhibitory pathway for the control of intracellular mycobacteria in murine macrophages.


Immunology | 2000

Increased resistance to mycobacterial infection in the absence of interleukin-10

Muazzam Jacobs; Najmeeyah Brown; Nasiema Allie; R. Gulert; Bernard Ryffel

Interleukin‐10 (IL‐10) down‐regulates T helper type 1 cell and macrophage functions. As IL‐10 is induced along with tumour necrosis factor (TNF) and IL‐12 in mycobacterial infection, we asked whether endogenous IL‐10 plays a role in the antimycobacterial response. We demonstrate here that IL‐10‐deficient mice eliminate Mycobacterium bovis Calmette–Guérin bacillus faster than wild‐type mice. Granulomas are significantly larger, containing more CD‐11b‐ and CD11c‐positive antigen‐presenting cells and T cells, and the expression of major histocompatibility complex class II and intracellular adhesion molecule‐1 is increased. Macrophages in granulomas of IL‐10‐deficient mice express high levels of TNF, acid phosphatase and inducible nitric oxide synthase (iNOS). Finally, an increased cutaneous delayed‐type hypersensitivity reaction to mycobacterial proteins is further evidence of an augmented cell‐mediated immune response. In conclusion, the cell‐mediated immunity is enhanced in the absence of IL‐10, resulting in a robust granuloma response, which accelerates the clearance of mycobacteria. Therefore, endogenous IL‐10 attenuates mycobacterial immunity.


Journal of Immunology | 2002

Neutrophil Influx in Response to a Peritoneal Infection with Salmonella Is Delayed in Lipopolysaccharide-Binding Protein or CD14-Deficient Mice

Kang K. Yang; Brigitte G. Dorner; Ulrike Merkel; Bernard Ryffel; Christine Schütt; Douglas T. Golenbock; Mason W. Freeman; Robert Smail Jack

The induction of an adaptive immune response to a previously unencountered pathogen is a time-consuming process and initially the infection must be held in check by the innate immune system. In the case of an i.p. infection with Salmonella typhimurium, survival requires both CD14 and LPS-binding protein (LBP) which, together with Toll-like receptor 4 and myeloid differentiation protein 2, provide a sensitive means to detect bacterial LPS. In this study, we show that in the first hours after i.p. infection with Salmonella a local inflammatory response is evident and that concomitantly neutrophils flood into the peritoneum. This rapid neutrophil influx is dependent on TNF since it is 1) abolished in TNF KO mice and 2) can be induced by i.p. injection of TNF in uninfected animals. Neutrophil influx is not strictly dependent on the presence of either LBP or CD14. However, in their absence, no local inflammatory response is evident, neutrophil migration is delayed, and the mice succumb to the infection. Using confocal microscopy, we show that the neutrophils which accumulate in CD14 and LBP null mice, albeit with delayed kinetics, are nevertheless fully capable of ingesting the bacteria. We suggest that the short delay in neutrophil influx gives the pathogen a decisive advantage in this infection model.


Cancer Research | 2010

Opposing Effects of Toll-like Receptor (TLR3) Signaling in Tumors Can Be Therapeutically Uncoupled to Optimize the Anticancer Efficacy of TLR3 Ligands

Rosa Conforti; Yuting Ma; Yannis Morel; Carine Paturel; Magali Terme; Sophie Viaud; Bernard Ryffel; Maria Ferrantini; Ravindra Uppaluri; Robert D. Schreiber; Christophe Combadière; Nathalie Chaput; Fabrice Andre; Guido Kroemer; Laurence Zitvogel

Many cancer cells express Toll-like receptors (TLR) that offer possible therapeutic targets. Polyadenylic-polyuridylic acid [poly(A:U)] is an agonist of the Toll-like receptor TLR3 that displays anticancer properties. In this study, we illustrate how the immunostimulatory and immunosuppressive effects of this agent can be uncoupled to therapeutic advantage. We took advantage of two TLR3-expressing tumor models that produced large amounts of CCL5 (a CCR5 ligand) and CXCL10 (a CXCR3 ligand) in response to type I IFN and poly(A:U), both in vitro and in vivo. Conventional chemotherapy or in vivo injection of poly(A:U), alone or in combination, failed to reduce tumor growth unless an immunochemotherapeutic regimen of vaccination against tumor antigens was included. CCL5 blockade improved the efficacy of immunochemotherapy, whereas CXCR3 blockade abolished its beneficial effects. These findings show how poly(A:U) can elicit production of a range of chemokines by tumor cells that reinforce immunostimulatory or immunosuppressive effects. Optimizing the anticancer effects of TLR3 agonists may require manipulating these chemokines or their receptors.


Cancer Research | 2012

Cancer-Induced Immunosuppression: IL-18–Elicited Immunoablative NK Cells

Magali Terme; Evelyn Ullrich; Laetitia Aymeric; Kathrin Meinhardt; Jérôme D. Coudert; Mélanie Desbois; François Ghiringhelli; Sophie Viaud; Bernard Ryffel; Hideo Yagita; Lieping Chen; Salaheddine Mécheri; G. Kaplanski; Armelle Prévost-Blondel; Masashi Kato; Joachim L. Schultze; Eric Tartour; Guido Kroemer; Mariapia A. Degli-Esposti; Nathalie Chaput; Laurence Zitvogel

During cancer development, a number of regulatory cell subsets and immunosuppressive cytokines subvert adaptive immune responses. Although it has been shown that tumor-derived interleukin (IL)-18 participates in the PD-1-dependent tumor progression in NK cell-controlled cancers, the mechanistic cues underlying this immunosuppression remain unknown. Here, we show that IL-18 converts a subset of Kit(-) (CD11b(-)) into Kit(+) natural killer (NK) cells, which accumulate in all lymphoid organs of tumor bearers and mediate immunoablative functions. Kit(+) NK cells overexpressed B7-H1/PD-L1, a ligand for PD-1. The adoptive transfer of Kit(+) NK cells promoted tumor growth in two pulmonary metastases tumor models and significantly reduced the dendritic and NK cell pools residing in lymphoid organs in a B7-H1-dependent manner. Neutralization of IL-18 by RNA interference in tumors or systemically by IL-18-binding protein dramatically reduced the accumulation of Kit(+)CD11b(-) NK cells in tumor bearers. Together, our findings show that IL-18 produced by tumor cells elicits Kit(+)CD11b(-) NK cells endowed with B7-H1-dependent immunoablative functions in mice.

Collaboration


Dive into the Bernard Ryffel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Evelyn Ullrich

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Magali Terme

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Yuting Ma

Institut Gustave Roussy

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge