Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuting Ma is active.

Publication


Featured researches published by Yuting Ma.


Science | 2011

Autophagy-Dependent Anticancer Immune Responses Induced by Chemotherapeutic Agents in Mice

Mickaël Michaud; Isabelle Martins; Abdul Qader Sukkurwala; Sandy Adjemian; Yuting Ma; Patrizia Pellegatti; Shensi Shen; Oliver Kepp; Marie Scoazec; Grégoire Mignot; Santiago Rello-Varona; Laurie Menger; Erika Vacchelli; Lorenzo Galluzzi; François Ghiringhelli; Francesco Di Virgilio; Laurence Zitvogel; Guido Kroemer

The release of adenosine triphosphate through autophagy can promote antitumor immune responses. Antineoplastic chemotherapies are particularly efficient when they elicit immunogenic cell death, thus provoking an anticancer immune response. Here we demonstrate that autophagy, which is often disabled in cancer, is dispensable for chemotherapy-induced cell death but required for its immunogenicity. In response to chemotherapy, autophagy-competent, but not autophagy-deficient, cancers attracted dendritic cells and T lymphocytes into the tumor bed. Suppression of autophagy inhibited the release of adenosine triphosphate (ATP) from dying tumor cells. Conversely, inhibition of extracellular ATP-degrading enzymes increased pericellular ATP in autophagy-deficient tumors, reestablished the recruitment of immune cells, and restored chemotherapeutic responses but only in immunocompetent hosts. Thus, autophagy is essential for the immunogenic release of ATP from dying cells, and increased extracellular ATP concentrations improve the efficacy of antineoplastic chemotherapies when autophagy is disabled.


OncoImmunology | 2014

Consensus guidelines for the detection of immunogenic cell death

Oliver Kepp; Laura Senovilla; Ilio Vitale; Erika Vacchelli; Sandy Adjemian; Patrizia Agostinis; Lionel Apetoh; Fernando Aranda; Vincenzo Barnaba; Norma Bloy; Laura Bracci; Karine Breckpot; David Brough; Aitziber Buqué; Maria G. Castro; Mara Cirone; María I. Colombo; Isabelle Cremer; Sandra Demaria; Luciana Dini; Aristides G. Eliopoulos; Alberto Faggioni; Silvia C. Formenti; Jitka Fucikova; Lucia Gabriele; Udo S. Gaipl; Jérôme Galon; Abhishek D. Garg; François Ghiringhelli; Nathalia A. Giese

Apoptotic cells have long been considered as intrinsically tolerogenic or unable to elicit immune responses specific for dead cell-associated antigens. However, multiple stimuli can trigger a functionally peculiar type of apoptotic demise that does not go unnoticed by the adaptive arm of the immune system, which we named “immunogenic cell death” (ICD). ICD is preceded or accompanied by the emission of a series of immunostimulatory damage-associated molecular patterns (DAMPs) in a precise spatiotemporal configuration. Several anticancer agents that have been successfully employed in the clinic for decades, including various chemotherapeutics and radiotherapy, can elicit ICD. Moreover, defects in the components that underlie the capacity of the immune system to perceive cell death as immunogenic negatively influence disease outcome among cancer patients treated with ICD inducers. Thus, ICD has profound clinical and therapeutic implications. Unfortunately, the gold-standard approach to detect ICD relies on vaccination experiments involving immunocompetent murine models and syngeneic cancer cells, an approach that is incompatible with large screening campaigns. Here, we outline strategies conceived to detect surrogate markers of ICD in vitro and to screen large chemical libraries for putative ICD inducers, based on a high-content, high-throughput platform that we recently developed. Such a platform allows for the detection of multiple DAMPs, like cell surface-exposed calreticulin, extracellular ATP and high mobility group box 1 (HMGB1), and/or the processes that underlie their emission, such as endoplasmic reticulum stress, autophagy and necrotic plasma membrane permeabilization. We surmise that this technology will facilitate the development of next-generation anticancer regimens, which kill malignant cells and simultaneously convert them into a cancer-specific therapeutic vaccine.


Journal of Experimental Medicine | 2011

Contribution of IL-17–producing γδ T cells to the efficacy of anticancer chemotherapy

Yuting Ma; Laetitia Aymeric; Clara Locher; Stephen R. Mattarollo; Nicolas F. Delahaye; Pablo Pereira; Laurent Boucontet; Lionel Apetoh; François Ghiringhelli; Noelia Casares; Juan José Lasarte; Goro Matsuzaki; Koichi Ikuta; Bernard Ryffel; Kamel Benlagha; Antoine Tesniere; Nicolas Ibrahim; Julie Déchanet-Merville; Nathalie Chaput; Mark J. Smyth; Guido Kroemer; Laurence Zitvogel

IL-17 production by γδ T cells is required for tumor cell infiltration by IFN-γ–producing CD8+ T cells and inhibition of tumor growth in response to anthracyclines.


Cancer Research | 2011

Pivotal Role of Innate and Adaptive Immunity in Anthracycline Chemotherapy of Established Tumors

Stephen R. Mattarollo; Sherene Loi; Helene Duret; Yuting Ma; Laurence Zitvogel; Mark J. Smyth

We show, in a series of established experimental breast adenocarcinomas and fibrosarcomas induced by carcinogen de novo in mice, that the therapeutic efficacy of doxorubicin treatment is dependent on CD8 T cells and IFN-γ production. Doxorubicin treatment enhances tumor antigen-specific proliferation of CD8 T cells in tumor-draining lymph nodes and promotes tumor infiltration of activated, IFN-γ-producing CD8 T cells. Optimal doxorubicin treatment outcome also requires both interleukin (IL)-1β and IL-17 cytokines, as blockade of IL-1β/IL-1R or IL-17A/IL-17Rα signaling abrogated the therapeutic effect. IL-23p19 had no observed role. The presence of γδ T cells, but not Jα18(+) natural killer T cells, at the time of doxorubicin treatment was also important. In tumor samples taken from breast cancer patients prior to treatment with anthracycline chemotherapy, a correlation between CD8α, CD8β, and IFN-γ gene expression levels and clinical response was observed, supporting their role in the therapeutic efficacy of anthracyclines in humans. Overall, these data strongly support the pivotal contribution of both innate and adaptive immunity in treatment outcomes of anthracycline chemotherapy.


Science Translational Medicine | 2012

Cardiac glycosides exert anticancer effects by inducing immunogenic cell death.

Laurie Menger; Erika Vacchelli; Sandy Adjemian; Isabelle Martins; Yuting Ma; Shensi Shen; Takahiro Yamazaki; Abdul Qader Sukkurwala; Mickaël Michaud; Grégoire Mignot; Frederic Schlemmer; Eric Sulpice; Clara Locher; Xavier Gidrol; François Ghiringhelli; Nazanine Modjtahedi; Lorenzo Galluzzi; Fabrice Andre; Laurence Zitvogel; Oliver Kepp; Guido Kroemer

Cardiac glycosides kill cancer cells in a way that stimulates the immune response. A Cancer Double Feature—3807 A traditional chemotherapeutic drug performs a one-act play: It enters and kills a dividing cancer cell and then takes its bow. However, some chemotherapeutics have a wider range—they not only kill individual cancer cells but also do so in such a way that the dead cells function as a vaccine that primes the immune system to attack other cancer cells. Menger et al. now identify cardiac glycosides as potent inducers of this so-called immunogenic cell death. Using fluorescence microscopy to detect the hallmarks of immunogenic cell death, the authors identified cardiac glycosides, such as the heart drug digoxin, as immunogenic cell death inducers. They then verified that these drugs had anticancer effects in mice with intact immune systems but not in mice that lacked functional immunity. Cancer cells that died from digoxin exposure then effectively functioned as a vaccine—stimulating the immune system so that growth of future cancers is prevented. Indeed, human cancer patients on chemotherapy who happened to be taking the cardiac glycoside digoxin to treat other medical conditions had improved overall survival compared with patients who were not taking these drugs. Although efficacy in cancer patients remains to be formally tested, cardiac glycosides may augment chemotherapeutic response—forcing cancer to bow out. Some successful chemotherapeutics, notably anthracyclines and oxaliplatin, induce a type of cell stress and death that is immunogenic, hence converting the patient’s dying cancer cells into a vaccine that stimulates antitumor immune responses. By means of a fluorescence microscopy platform that allows for the automated detection of the biochemical hallmarks of such a peculiar cell death modality, we identified cardiac glycosides (CGs) as exceptionally efficient inducers of immunogenic cell death, an effect that was associated with the inhibition of the plasma membrane Na+- and K+-dependent adenosine triphosphatase (Na+/K+-ATPase). CGs exacerbated the antineoplastic effects of DNA-damaging agents in immunocompetent but not immunodeficient mice. Moreover, cancer cells succumbing to a combination of chemotherapy plus CGs could vaccinate syngeneic mice against a subsequent challenge with living cells of the same type. Finally, retrospective clinical analyses revealed that the administration of the CG digoxin during chemotherapy had a positive impact on overall survival in cohorts of breast, colorectal, head and neck, and hepatocellular carcinoma patients, especially when they were treated with agents other than anthracyclines and oxaliplatin.


OncoImmunology | 2012

Trial watch: Prognostic and predictive value of the immune infiltrate in cancer.

Laura Senovilla; Erika Vacchelli; Jérôme Galon; Sandy Adjemian; Alexander Eggermont; Wolf Hervé Fridman; Yuting Ma; Eric Tartour; Laurence Zitvogel; Guido Kroemer; Lorenzo Galluzzi

Solid tumors are constituted of a variety of cellular components, including bona fide malignant cells as well as endothelial, structural and immune cells. On one hand, the tumor stroma exerts major pro-tumorigenic and immunosuppressive functions, reflecting the capacity of cancer cells to shape the microenvironment to satisfy their own metabolic and immunological needs. On the other hand, there is a component of tumor-infiltrating leucocytes (TILs) that has been specifically recruited in the attempt to control tumor growth. Along with the recognition of the critical role played by the immune system in oncogenesis, tumor progression and response to therapy, increasing attention has been attracted by the potential prognostic and/or predictive role of the immune infiltrate in this setting. Data from large clinical studies demonstrate indeed that a robust infiltration of neoplastic lesions by specific immune cell populations, including (but not limited to) CD8+ cytotoxic T lymphocytes, Th1 and Th17 CD4+ T cells, natural killer cells, dendritic cells, and M1 macrophages constitutes an independent prognostic indicator in several types of cancer. Conversely, high levels of intratumoral CD4+CD25+FOXP3+ regulatory T cells, Th2 CD4+ T cells, myeloid-derived suppressor cells, M2 macrophages and neutrophils have frequently been associated with dismal prognosis. So far, only a few studies have addressed the true predictive potential of TILs in cancer patients, generally comforting the notion that—at least in some clinical settings—the immune infiltrate can reliably predict if a specific patient will respond to therapy or not. In this Trial Watch, we will summarize the results of clinical trials that have evaluated/are evaluating the prognostic and predictive value of the immune infiltrate in the context of solid malignancies.


Science | 2015

Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1

Erika Vacchelli; Yuting Ma; Elisa E. Baracco; Antonella Sistigu; David Enot; Federico Pietrocola; Heng Yang; Sandy Adjemian; Kariman Chaba; Michaela Semeraro; Michele Signore; Adele De Ninno; Valeria Lucarini; Francesca Peschiaroli; Luca Businaro; Annamaria Gerardino; Gwenola Manic; Thomas Ulas; Patrick Günther; Joachim L. Schultze; Oliver Kepp; Gautier Stoll; Celine Lefebvre; Claire Mulot; Francesca Castoldi; Sylvie Rusakiewicz; Sylvain Ladoire; Lionel Apetoh; José Manuel Bravo-San Pedro; Monica Lucattelli

How dying tumor cells get noticed Besides killing tumor cells directly, some chemotherapies, such as anthracyclines, also activate the immune system to kill tumors. Vacchelli et al. discovered that in mice, anthracycline-induced antitumor immunity requires immune cells to express the protein formyl peptide receptor 1 (FPR1). Dendritic cells (DCs) near tumors expressed especially high amounts of FPR1. DCs normally capture fragments of dying tumor cells and use them to activate nearby T cells to kill tumors, but DCs lacking FPR1 failed to do this effectively. Individuals with breast or colon cancer expressing a variant of FPR1 and treated with anthracyclines showed poor metastasis-free and overall survival. Thus, FPR1 may affect anti-tumor immunity in people, too. Science, this issue p. 972 Formyl peptide receptor 1 helps the immune system sense dying tumor cells. Antitumor immunity driven by intratumoral dendritic cells contributes to the efficacy of anthracycline-based chemotherapy in cancer. We identified a loss-of-function allele of the gene coding for formyl peptide receptor 1 (FPR1) that was associated with poor metastasis-free and overall survival in breast and colorectal cancer patients receiving adjuvant chemotherapy. The therapeutic effects of anthracyclines were abrogated in tumor-bearing Fpr1−/− mice due to impaired antitumor immunity. Fpr1-deficient dendritic cells failed to approach dying cancer cells and, as a result, could not elicit antitumor T cell immunity. Experiments performed in a microfluidic device confirmed that FPR1 and its ligand, annexin-1, promoted stable interactions between dying cancer cells and human or murine leukocytes. Altogether, these results highlight the importance of FPR1 in chemotherapy-induced anticancer immune responses.


Cancer Research | 2010

Opposing Effects of Toll-like Receptor (TLR3) Signaling in Tumors Can Be Therapeutically Uncoupled to Optimize the Anticancer Efficacy of TLR3 Ligands

Rosa Conforti; Yuting Ma; Yannis Morel; Carine Paturel; Magali Terme; Sophie Viaud; Bernard Ryffel; Maria Ferrantini; Ravindra Uppaluri; Robert D. Schreiber; Christophe Combadière; Nathalie Chaput; Fabrice Andre; Guido Kroemer; Laurence Zitvogel

Many cancer cells express Toll-like receptors (TLR) that offer possible therapeutic targets. Polyadenylic-polyuridylic acid [poly(A:U)] is an agonist of the Toll-like receptor TLR3 that displays anticancer properties. In this study, we illustrate how the immunostimulatory and immunosuppressive effects of this agent can be uncoupled to therapeutic advantage. We took advantage of two TLR3-expressing tumor models that produced large amounts of CCL5 (a CCR5 ligand) and CXCL10 (a CXCR3 ligand) in response to type I IFN and poly(A:U), both in vitro and in vivo. Conventional chemotherapy or in vivo injection of poly(A:U), alone or in combination, failed to reduce tumor growth unless an immunochemotherapeutic regimen of vaccination against tumor antigens was included. CCL5 blockade improved the efficacy of immunochemotherapy, whereas CXCR3 blockade abolished its beneficial effects. These findings show how poly(A:U) can elicit production of a range of chemokines by tumor cells that reinforce immunostimulatory or immunosuppressive effects. Optimizing the anticancer effects of TLR3 agonists may require manipulating these chemokines or their receptors.


Trends in Immunology | 2012

Harnessing γδ T cells in anticancer immunotherapy

Dalil Hannani; Yuting Ma; Takahiro Yamazaki; Julie Déchanet-Merville; Guido Kroemer; Laurence Zitvogel

γδ T lymphocytes are involved in the stress response to injured epithelia and in tissue homeostasis by limiting the dissemination of malignant or infected cells and by regulating the nature of the subsequent adaptive immune response. γδ T cells have potent MHC-unrestricted cytotoxicity, a high potential for cytokine release and broad-spectrum recognition of cancer cells, and as such, are attractive effectors for cancer immunotherapy. Current expectations are going beyond ex vivo manipulation of the Vγ9Vδ2 T subset, and target novel γδ T cell subsets, properties or receptors, to harness these unconventional T lymphocytes against cancer. This Opinion article discusses novel aspects of γδ T cell function during the course of anticancer therapies, as well as new avenues for their clinical implementation.


Cancer Research | 2014

CCL2/CCR2-Dependent Recruitment of Functional Antigen-Presenting Cells into Tumors upon Chemotherapy

Yuting Ma; Stephen R. Mattarollo; Sandy Adjemian; Heng Yang; Laetitia Aymeric; Dalil Hannani; João Paulo Portela Catani; Helene Duret; Michele W.L. Teng; Oliver Kepp; Yidan Wang; Antonella Sistigu; Joachim L. Schultze; Gautier Stoll; Lorenzo Galluzzi; Laurence Zitvogel; Mark J. Smyth; Guido Kroemer

The therapeutic efficacy of anthracyclines relies, at least partially, on the induction of a dendritic cell- and T-lymphocyte-dependent anticancer immune response. Here, we show that anthracycline-based chemotherapy promotes the recruitment of functional CD11b(+)CD11c(+)Ly6C(high)Ly6G(-)MHCII(+) dendritic cell-like antigen-presenting cells (APC) into the tumor bed, but not into lymphoid organs. Accordingly, draining lymph nodes turned out to be dispensable for the proliferation of tumor antigen-specific T cells within neoplastic lesions as induced by anthracyclines. In addition, we found that tumors treated with anthracyclines manifest increased expression levels of the chemokine Ccl2. Such a response is important as neoplasms growing in Ccl2(-/-) mice failed to accumulate dendritic cell-like APCs in response to chemotherapy. Moreover, cancers developing in mice lacking Ccl2 or its receptor (Ccr2) exhibited suboptimal therapeutic responses to anthracycline-based chemotherapy. Altogether, our results underscore the importance of the CCL2/CCR2 signaling axis for therapeutic anticancer immune responses as elicited by immunogenic chemotherapy.

Collaboration


Dive into the Yuting Ma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark J. Smyth

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Heng Yang

Institut Gustave Roussy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge